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Abstract

Motivated by information-theoretic considerations, we propose a signalling scheme,unitary space-
time modulation, for multiple-antenna communication links. This modulation is ideally suited for Rayleigh
fast-fading environments, since it does not require the receiver to know or learn the propagation coeffi-
cients.

Unitary space-time modulation uses constellations ofT�M space-time signalsf�`; ` = 1; : : : ; Lg,
whereT represents the coherence interval during which the fading is approximately constant, andM <T is the number of transmitter antennas. The columns of each�` are orthonormal. When the receiver
does not know the propagation coefficients, which between pairs of transmitter and receiver antennas are
modeled as statistically independent, this modulation performs very well either when the SNR is high or
whenT �M .

We design some multiple-antenna signal constellations andsimulate their effectiveness as measured
by bit error probability with maximum likelihood decoding.We demonstrate that two antennas have a 6
dB diversity gain over one antenna at 15 dB SNR.

Index Terms—Multi-element antenna arrays, wireless communications,channel coding, fading chan-
nels, transmitter and receiver diversity, space-time modulation
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1 Introduction

Fading is traditionally regarded as a nuisance by the designers of wireless communications systems. Its

effects are often mitigated by some combination of differential phase modulation, interleaving, or the trans-

mission of pilot or training signals [1]. But, paradoxically, Rayleigh flat fading can be beneficial for a

multiple-antenna communication link. It is shown in [6, 19]that, in a Rayleigh flat-fading environment, a

link has a theoretical capacity that increases linearly with the smaller of the number of transmitter and re-

ceiver antennas, provided that the complex-valued propagation coefficients between all pairs of transmitter

and receiver antennas are statistically independent and known to the receiver.

However, learning the fading coefficients becomes increasingly difficult as either the fading rate or

number of transmitter antennas increases. In an effort to increase channel capacity or lower error probability,

it is accepted practice to increase the number of transmitter antennas (thereby gaining “diversity” [9], [15]).

But increasing the number of transmitter antennas increases the required training interval and reduces the

available time in which data may be transmitted before the fading coefficients change. At vehicle speeds

of 60 miles/hour, a mobile operating at 1.9 GHz has a fading coherence interval of about 3 ms, which for a

symbol rate of 30 kHz corresponds to a fresh fade every 50–100symbol periods. If several training symbols

per transmitter antenna are needed, the coefficients for only a few antennas can be learned before a fresh

fade occurs. Next-generation cellular systems in Europe will be expected to operate under very fast fading

(trains moving at speeds up to 500 km/hr [20]) and hence it maybe impractical to learn even the single

coefficient between one transmitter and one receiver antenna.

Motivated by these considerations, we used Shannon theory in [8] to analyze multiple-antenna links

without imposing any training schemes and with no assumed knowledge of the random fading coefficients.

The complex fading coefficients between all pairs of transmitter and receiver antennas were modelled as in-

dependent with uniformly distributed phases and Rayleigh distributed magnitudes. The fading coefficients

were piecewise constant over fixed time intervals, with channel coding performed over many such indepen-

dent fading intervals. We showed that the channel capacity could not be increased by making the number of

transmit antennas greater than the length of the fading interval, and found that the capacity-attaining signals

had considerable structure. However, we did not explicitlyaddress the problems of modulation and channel

coding. In this paper, we use the structure derived in [8] to motivate a particular space-time modulation

scheme.

The information-theoretic results in [8] suggest a signal constellation comprising complex-valued sig-
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nals that are orthonormal with respect to time among the transmitter antennas. We call this signalling

schemeunitary space-time modulation. When viewed as vector functions of time, the signals carry the

message information entirely in their directions. In this paper, we explain in detail how to create, modulate,

and demodulate unitary space-time modulation on a multipleantenna link operating in Rayleigh flat fading.

Throughout most of the paper the propagation coefficients are assumed to be unknown to the receiver, but we

also show how to use the modulation when the coefficients are known. When the receiver does not know the

coefficients, no attempt to learn them is made. We concentrate on modulation and constellation design, and

do not address coding issues that lower error probability byadding redundancy. We focus, instead, on raw or

uncoded signal and bit error probabilities. When combined with appropriate channel coding, our proposed

signal constellations can theoretically attain a high fraction of the channel capacity. Some multiple-antenna

coding issues for receivers that know the channel appear in [18].

Section 2 presents the signal model and operating assumptions, and Section 3 reviews the information-

theoretic foundations for unitary space-time modulation.In Section 4, we extend the information-theoretic

justification by arguing that unitary space-time modulation is nearly optimal when the signal-to-noise ratio is

high. In Section 5, we consider the use of unitary space-timemodulation to transmit data across a multiple-

antenna link, and discuss maximum likelihood demodulationand the properties a good constellation should

have. In Section 6 some signal design issues are treated and simulations of a two-transmitter-antenna system

are presented. We extend some of the piecewise-constant theory to continuous fading in Section 7.

The following notation is used throughout the paper:log x is the base-two logarithm ofx, while lnx is

basee. Given a sequenceb1; b2; : : : ; of positive real numbers, we say thatan = O(bn) asn!1 if janj=bn
is bounded by some positive constant for sufficiently largen; we say thatan = o(bn) if limn!1 an=bn = 0.

Two complex vectors,a and b, are orthogonal if ayb = 0, where the superscripty denotes “conjugate

transpose.” The mean-zero, unit-variance, circularly-symmetric, complex Gaussian distribution is denotedCN (0; 1).
2 Multiple-Antenna Link: Signal Model

Consider a communication link comprisingM transmitter antennas andN receiver antennas that operates

in a Rayleigh flat-fading environment. Each receiver antenna responds to each transmitter antenna through

a statistically independent fading coefficient that is constant for T symbol periods. The received signals

are corrupted by additive noise that is statistically independent among theN receivers and theT symbol
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periods. In complex baseband representation, during theT -symbol interval we transmit the signalfstm; t =1; : : : ; T; m = 1; : : : ;Mg, and we receive the noisy signalfxtn; t = 1; : : : ; T; n = 1; : : : ; Ng related by

the equation xtn =p�=M MXm=1 hmnstm + wtn; t = 1; : : : T; n = 1 : : : N: (1)

Herehmn is the complex-valued fading coefficient between themth transmitter antenna and thenth receiver

antenna. The fading coefficients are constant fort = 1; : : : T , and they are independent with respect tom
andn andCN (0; 1) distributed, with densityp(hmn) = 1� exp��jhmnj2	 :
The transmitted signal has an average (over theM antennas) expected power equal to one,1M MXm=1E jstmj2 = 1; t = 1; : : : ; T: (2)

The additive noise at timet and receiver antennan is denotedwtn, and is independent (with respect to botht andn), identically distributedCN (0; 1). The quantities in the signal model (1) are normalized so that �
represents the expected signal-to-noise ratio (SNR) at each receiver antenna, independently of the number

of transmitter antennas. We assume that the realizations ofhmn, m = 1; : : : ;M , n = 1; : : : ; N are not

known to the receiver or transmitter.

We use matrix notation for the transmitted signalS (T � M), and the received signalX (T � N).
Conditioned onS, the received signalX has independent and identically distributed columns (across theN antennas); at a particular antenna, theT received symbols are zero-mean circularly-symmetric complex

Gaussian, withT � T covariance matrix� = IT + (�=M)SSy; (3)

whereIT is theT � T identity matrix. The received signal has conditional probability density,p(X j S) = exp ��tr���1XXy	��TN detN � ; (4)

where “tr” denotes the trace function.
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We assume, for now, that the fading coefficients change to newindependent realizations everyT symbol

periods. This piecewise constant fading process mimics, ina tractable manner, the behavior of a continu-

ously fading process. Furthermore, it is a very accurate representation of many TDMA, frequency hopping,

or block-interleaved systems [13]. We consider continuousfading processes later. Each channel use (con-

sisting of a block ofT transmitted symbols) is independent of every other. Thus, data can be transmitted

reliably at any rate less than the channel capacity, where the capacity is the least upper bound on the mutual

information betweenX andS, or C = supp(S) I(X;S);
subject to the average power constraint (2), and whereI(X;S) = E log p(X j S)p(X)= Z dS p(S)Z dX p(X j S) log( p(X j S)R d �S p( �S)p(X j �S)) : (5)

The capacityC is measured in bits per block ofT symbols. In general, one must code across multiple blocks

to achieve capacity.

3 Summary of Known Capacity Results

The conditional density (4) has considerable symmetry arising from the statistical equivalence of each time-

sample and of each transmitter antenna. The special properties of the conditional density, in combination

with the concavity of the mutual information functional, lead to some general conclusions [8] that are sum-

marized here.

3.1 Capacity limited by length of coherence interval; structure of capacity attaining signals

Theorem 1 (Limit on number of transmitter antennas) For any coherenceintervalT and any fixed number

of receiver antennas, the capacity obtained withM > T transmitter antennas equals the capacity obtained

withM = T transmitter antennas.

In what follows we assume thatM � T .

Theorem 2 (Structure of signal that achieves capacity) A capacity-achieving random signal matrix may be

constructed as a productS = �V , where� is an isotropically distributedT �M matrix whose columns are
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orthonormal, andV is an independentM �M real, nonnegative, diagonal matrix. Furthermore, we can

choose the joint density of the diagonal elements ofV to be unchanged by rearrangements of its arguments.

An isotropically distributedunit vector has a probability density that is unchanged whenthe vector is

left-multiplied by any deterministic unitary matrix. Similarly, the isotropically distributedT �M matrix�
obeys�y� = I, and has a density that is unchanged when it is left-multiplied by anyT � T unitary matrix.

In a natural way,� is the matrix counterpart of a complex scalar having unit magnitude and uniformly

distributed phase. The joint probability density of� in terms of itsM columns�1; : : : ; �M is [8]p(�) = " MYm=1 �(T + 1�m)�T+1�m # � Ym1 ;m2m1�m2 � ��ym1�m2 � �m1m2� ; (6)

where�(�) is the Dirac delta function defined for complex arguments to be�(�) = �(Re f�g) � �(Im f�g), and�m1m2 is one whenm1 = m2 and is zero otherwise. Substituting the structuredS into (5) and performing

some simplification yieldsI(X;S) = �TN log e�N � MXm=1E log�1 + �v2mM �� Z d� � p(�) � f(�) � hlog f(�)� (log e) � min(N;T )X̀=1 �`i; (7)

wherev1; : : : ; vM are the nonnegative real diagonal entries ofV ,f(�) def= Z dV � p(V )QMm=1(1 + �M v2m)N�Z d� p(�) � exp8<:min(N;T )X̀=1 MXm=1 �` �� �v2mM + �v2m� � j�`mj29=; ; (8)

and p(�) def= e�Pmin(N;T )`=1 �` � �Qmin(N;T )`=1 �`�jT�N j �Qi<j(�i � �j)2Qmin(N;T )`=1 �(T � `+ 1) � �(N � `+ 1) : (9)

In the above,p(V ) denotes the joint density onv1; : : : ; vM , and� def= [�1; : : : ; �min(N;T )]. Computing

the channel capacity requires maximizingI(X;S) with respect to the joint probability density of theM
nonnegative real diagonal elements ofV . It is shown in [8] that we may chooseE v21 = : : : = E v2M = T .
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The transmitted signal has the partitioned formS = h v1�1 � � � vM�M i
, where theM columns,

representing the temporal signals fed into theM transmitter antennas, are mutually orthogonal. As we will

argue, for eitherT � M , or for high SNR andT > M , settingv1 = : : : = vM = pT , which we call

unitary space-time modulation, achieves capacity.

3.2 Capacity bounds

An upper bound on capacity is obtained if we assume that the receiver is provided with a noise-free mea-

surement of the propagation coefficientsH. Thisperfect-knowledgeupper bound is [6], [19]Cu = T � E log det hIN + �MHyHi (10)

per block ofT symbols. WhenH is known to the receiver, the perfect-knowledge capacity bound is achieved

with transmitted signalS whose elements are independentCN (0; 1). For the special caseM = N = 1 the

perfect-knowledge capacity upper bound isCu = T (log e)e1=�E1(1=�), whereE1(x) def= R1x e�yy dy is the

exponential integral.

A lower bound on capacity that we denoteCl is obtained by assigning unit probability mass tov1 =� � � = vM = pT , substituting this mass function into (7), and integratingwith respect toV . For the special

caseM = N = 1, the integration over� in (8) can be performed analytically to yield the capacity lower

bound Cl = �T log e� log(1 + �T )�Z 10 (T � 1)e��=(1+�T )�T � 1; �T�1+�T ��(T )(1 + �T ) h �T1+�T iT�1 log"(T � 1)e��=(1+�T )�T � 1; �T�1+�T �(1 + �T ) h �T�1+�T iT�1 #d�; (11)

where(T; z) def= R z0 qT�1e�qdq is theincomplete gammafunction. The next theorem, proven in [8], says

thatCl=T ! C=T ! Cu=T , and the capacity-achieving distribution ofv1 is a unit mass at
pT , asT !1.

3.3 Asymptotic capacity and signal structure forT �M
Theorem 3 (Capacity, asymptotically inT ) LetM = N = 1. The capacity has the asymptotic expansion(log e)e1=�E1(1=�) � O�q log TT � = Cl=T � C=T � Cu=T = (log e)e1=�E1(1=�), asT ! 1. This

capacity is achieved asT !1 by settingv1 = pT with probability 1.
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Heuristic considerations suggest strongly that Theorem 3 extends in a reasonable way to multiple trans-

mitter and receiver antennas. AlthoughH is unknown to the receiver, asT becomes large we could reserve

a small portion of the coherence interval to send training data from which the receiver could estimateH, soC=T should approachCu=T asT !1 and this capacity would be attained by a transmitted signalS whose

components are approximately independentCN (0; 1). To demonstrate thatS = pT�, where�y� = I and� is isotropically distributed, attains capacity, we note that asT !1 the entries ofS have distributions that

approach independentCN (0; 1) (see [8]). On the other hand, whenM = T , settingv1 = : : : = vM = pT
is not useful; in this case,SSy = T ���y = T � IT , sop(X j S) = p(X) and no information is transmitted.

In what follows we always assume thatM < T .

4 Unitary Space-Time Modulation and High SNR

Unitary space-time modulation defined

The key results of the previous section say that: 1) There is no point in making the number of transmitter

antennas greater than the duration of the coherence interval; 2) When the duration of the coherence interval

is significantly greater than the number of transmitter antennas (T � M ), settingv1 = : : : = vM = pT
attains capacity. Taking our cue from these considerations, we defineunitary space-time modulationto

be the transmission ofS = pT�, where�y� = I. The previous section argues that unitary space-time

modulation attains capacity forT � M . We now argue that unitary space-time modulation is optimalalso

for any fixedT > M , as�!1. The following result, for the special caseM = N = 1, shows that lettingv1 = pT with probability one achieves capacity asymptotically as�!1 for any fixedT > 1.

Theorem 4 (Capacity, asymptotically in�) LetM = N = 1 andT > 1. The capacity has the asymptotic

expansions C = T � 1T Cu + log��Te �T�1 1�(T )�+ o(1) (12)= log�� �Te+1�T�1 1�(T )�+ o(1) (13)

as � ! 1, where = 0:5772 : : : is Euler’s constant. This capacity is achieved as� ! 1 by settingv1 = pT with probability 1.

Proof: See Appendix A.
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Figure 1 displays, forM = N = 1 andT = 2, the exact capacity (obtained with the Blahut-Arimoto

algorithm [2], [8]), the perfect-knowledge upper bound (10), the lower bound (11), and the expansion (12)

as a function of�. Figure 2 is similar, except thatT = 5, and we see that the lower bounds, asymptotic

expansions, and capacities are essentially the same for allSNR’s greater than0 dB. Unlike the case in

Theorem 3 whereT !1, when�!1 we see that the capacity diverges away from the upper bound.

It is worth attempting to find an intuitive explanation for Theorem 4. The first term in (12) appears to

be consistent with the strategy of sending a single known training symbol from which the receiver obtains

a very accurate estimate for the fading coefficient, and thentransmitting the remainingT � 1 symbols

as if the fading coefficient were known to the receiver. The capacity thus obtained would correspond to

approximatelyT � 1 perfect-knowledge channel uses, giving rise to the first term in (12); the remaining

terms can be viewed as the penalty for estimating the fading coefficient imperfectly.

But this appealing argument does not explain why unitary space-time modulations = pT�, which

has no explicit training, achieves capacity. Instead, lets = v�, wherev obeysE v2 = T but is otherwise

arbitrary, and consider the high-SNR received signal,x � p�vh�;
wherex and� areT -dimensional vectors. The unit vector�, apart from its overall phase, can be determined

very accurately fromx, regardless ofh. However, the scalar amplitudev cannot be determined so easily

because it is multiplied by the unknown scalarh. Hence, when the SNR is high, transmitting information

on� appears to be more profitable than transmitting onv. This suggests that we should simply setv = pT .

Note that both this argument and Theorem 4 apply only ifT > 1.

A similar intuitive argument suggests that Theorem 4 also holds for multiple transmitters and receivers;

that isv1; : : : ; vM !pT as�!1. For high SNR andT > M , the signal at thenth receiver antenna isxn �p�=M MXm=1 vmhmn�m; (14)

wherexn and �m are T -dimensional vectors. Even for a very high SNR we cannot easily determinev1; : : : ; vM because they are multiplied by the unknown fading coefficients h1n; : : : ; hMn. However, the

columns of� span anM -dimensional subspace of theT -dimensional complex vector space. In this vector

space, the subspace is a hyperplane, and any two signals�i and�j that generate nonidentical subspaces
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yield two distinct hyperplanes that intersect on some lower-dimensional hyperline. The probability ofxn
falling on one of these intersections is zero. Hence, independently ofhmn, for high SNR we can perfectly

distinguish�i from�j as long as their columns do not span the same subspace. (We demonstrate this effect

in the next section by calculating the probability of mistaking one for the other.) Nevertheless, we do not

have a proof thatv1; : : : ; vM !pT as�!1, for M > 1.

In short, when eitherT � M , or � is large withT > M , information-theoretic arguments say that

the modulation ofv1; : : : ; vM is neither very interesting nor very useful. Rather one should use unitary

space-time modulation, wherev1 = � � � = vM = pT and where all message information is transmitted on

the directions of the orthonormal columns of�. While information-theoretic arguments implicitly require

the use of channel codes to attain capacity, we now consider the use of unitary space-time modulation in an

uncoded form, and find design rules that help us generate goodconstellations of these signals.

5 ML Receiver for Unitary Space-Time Modulation

We now consider maximum likelihood (ML) reception of a constellation ofL signals employing unitary

space-time modulation, S` = pT�`; ` = 1; : : : ; L;
wheref�`; ` = 1; : : : ; Lg areT �M complex matrices satisfying�ỳ�` = I. Ignore, for the moment, the

problem of how to generate such a constellation. We derive the ML receiver and its performance whenH is

unknown and, for comparison, whenH is known to the receiver (H is never known to the transmitter). It is

customary to call the former receiver noncoherent and the latter receiver coherent.

5.1 Channel unknown to receiver

Maximum likelihood decoding becomes�ml = arg max�`2f�1;:::;�Lg p(X j �`)= arg max�`2f�1;:::;�Lg exp��tr�hIT + (�T=M) �`�ỳi�1XXy���TN detN hIT + (�T=M) �`�ỳi= arg max�`2f�1;:::;�Lg exp��trnhIT � 11+M=�T �`�ỳiXXyo��TN (1 + �T=M)MN
9
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= arg max�`2f�1;:::;�Lg tr fXy�`�ỳXg; (15)

where the matrix formulasdet(I + AB) = det(I + BA) and(A + BCD)�1 = A�1 � A�1B(C�1 +DA�1B)�1DA�1 are used [17]. The ML receiver seeks to maximize the energy contained in theMN
inner products that comprise�ỳX.

Suppose now thatL = 2, and�1 and�2 are transmitted with equal probability. The probability of

decoding error is thenPe = 12P(tr fXy�2�y2Xg > tr fXy�1�y1Xg j �1 transmitted)+ 12P(tr fXy�1�y1Xg > tr fXy�2�y2Xg j �2 transmitted): (16)

As we show in the next theorem, the probability of error giventhat�1 is transmitted is equal to the proba-

bility of error given that�2 is transmitted, andPe has a closed-form analytical expression that depends only

on the singular values of theM �M matrix�y2�1.
Theorem 5 (Two-signal error probability:H unknown) Suppose that two unitary space-time modulation

signals�1 and �2 are transmitted with equal probability, and decoded with anML receiver. Then the

probability of error isPe =Xj Res!=iaj 8><>:� 1! + i=2 MYm=1dm<1 � 1 + �T=M(�T=M)2(1� d2m)(!2 + a2m)�N9>=>; ; (17)

where1 � d1 � : : : � dM � 0 are the singular values of theM �M matrix�y2�1, andam def= s14 + 1 + �T=M(�T=M)2(1� d2m) :
Furthermore,Pe decreases as anydm decreases, and has Chernoff upper boundPe � 12 MYm=124 11 + (�T=M)2(1�d2m)4(1+�T=M) 35N : (18)

Proof: See Appendix B.

For a single transmitter antenna (M = 1), d1 is the magnitude of the inner product between�1 and�2.
10
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For multiple transmitter antennas,d1; : : : ; dM represent the similarity between the subspaces spanned by

the columns of�1 and�2. The formula (17) is a closed-form expression that can be explicitly evaluated for

any special case. See, for example, Appendix B, for the explicit evaluation whend1 = : : : = dM . For givend1; : : : ; dM , the dependence of the probability of error on� andT is only through the product�T .

Figure 3 displays the probability of error as a function of SNR for one transmitter and one receiver

antenna (M = N = 1) andT = 5 for d1 = d = 0:0, 0.4, and 0.8. Note that reducingd below 0.4 gains at

most 1 dB in equivalent SNR. Figure 4 shows the probability oferror as a function ofd and SNR=0, 10, and

20 dB. Here we can see more clearly that reducingd below approximately0:4 does not reduce the error by

much. Figure 5 illustrates the probability of error for two transmitter antennas (M = 2), with d1 = d2 = d.

Comparing this figure with Figure 3 reveals that for SNR’s greater than 5 dB, two transmitter antennas can

have significantly lower error probability than one with thesame total transmitted power. This is seen more

explicitly in Section 6. Figure 6 superimposes thed = 0 andd = 0:8 curves from Figures 3 and 5 for

relatively low SNR. Observe that below approximately -2 dB,employing a second antenna with unitary

space-time modulation actually increases the probabilityof error. This is not inconsistent with Theorems 3

and 4, which say that unitary space-time modulation is optimal for high SNR or largeT . We conclude that

when employing unitary space time modulation for given values of�, T , andN , there is an optimal number

of transmitter antennasM that may be considerably smaller thanT .

5.2 Channel known to receiver

We have justified unitary space time modulationS = pT� on information-theoretic grounds for receivers

that do not know the channel, when eitherT � M or � is large. Surprisingly, we can also justify this

modulation whenT �M and when the receiver knows the channel. When the receiver knows the channel,

capacity is achieved by anS matrix composed of independentCN (0; 1) random variables. In Section 3 it is

argued thatS = pT� (with � isotropically distributed) approaches, in distribution,a matrix of independentCN (0; 1) random variables asT ! 1. Hence, forT sufficiently large, unitary space-time modulation is

nearly optimal, even when the channel is known. Knowledge ofH, however, mandates different criteria for

designing a signal constellation.

WhenH is known to the receiver (although still random),p(X j S;H) = 1�TN exp��tr n(X �p�=MSH)(X �p�=MSH)yo� ;
11
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and maximum likelihood decoding is�ml = arg min�`2f�1;:::;�Lg tr f(X �p�T=M�`H)(X �p�T=M�`H)yg:
As shown in the next theorem, the two-signal probability of error depends on the singular values of theT �M difference�2 � �1.
Theorem 6 (Two-signal error probability:H known) Suppose that two unitary space-time modulation sig-

nals�1 and�2 are transmitted with equal probability, and decoded with anML receiver that knowsH
perfectly. Then the probability of error, averaged overH, isPe =Xj Res!=i�j 8><>:� 1! + i=2 MYm=1�m>0 � 1(�T=M)�2m(!2 + �2m)�N9>=>; ; (19)

where2 � �1 � : : : � �M � 0 are the singular values of�2 � �1, and�m def= s14 + 1�T�2m=M :
Furthermore,Pe decreases as any�m increases, and has Chernoff upper boundPe � 12 MYm=1 " 11 + �T4M �2m#N : (20)

Proof: See Appendix C.

We note that whenH is known andS1 andS2 are arbitrary (i.e., do not necessarily have the unitary

space-time structure) the derivation of exact probabilityof error in Appendix C still applies with minor

changes. The probability of error and Chernoff bound for arbitrary S1 andS2 are still given by (19) and

(20), but with�1; : : : ; �M replaced by the singular values of(S2 � S1)=pT . See [18] for an alternative

derivation of the Chernoff bound.

In general, there is no direct relationship between the known-H singular values�1; : : : ; �M , and the

unknown-H singular valuesd1; : : : ; dM . WhenM = 1, for example, we haved1 = j�y2�1j and �1 =k�2��1k =q2� 2Re (�y2�1), so for a given value ofd1, �1 can have the range of values
p2(1� d1) ��1 �p2(1 + d1).

For the special cased1 = : : : = dM = 0 (the two signals are orthogonal), then�1 = : : : = �M = p2,

12
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and a direct comparison of (17) and (19) is meaningful. For high SNR, the Chernoff bounds forH unknown

(18) andH known (20) are thenPe . 12 � 4�T �MN (unknown); Pe . 12 � 2�T �MN (known);
which suggests that the probability of error is a factor of approximately2MN lower when the receiver knowsH than when it does not. Figure 7 shows the exact probability oferror as a function of SNR when the two

signals are orthogonal, for known and unknownH, andM = N = 1, andT = 5. For moderately high

SNR’s the knowledge ofH yields a 3 dB gain, as expected.

We have seen that whenH is known to the receiver, unitary space time modulation is a viable option forT � M . However, the maximum likelihood receivers for knownH versus unknownH are considerably

different, and so are the dependencies of probability of error on the signals. In the former we seek to

maximize the singular values of�2 � �1, whereas in the latter we seek to minimize the singular values

of �y2�1; these criteria are not compatible. Moreover, signal constellations for knownH generally have

to be larger than those for unknownH, reflecting the significantly higher channel capacity and lower error

probability. WhenH is known, signals are distinguishable that would otherwisebe indistinguishable ifH
were unknown, including antipodal pairs�S, as well as signals whose columns are permuted with respect

to one another. The remainder of the paper considers only unknownH.

6 Design of Unitary Space-Time Modulation Constellations

We wish to design a constellation ofL signalsfS` = pT�`; ` = 1; � � � ; Lg, where�ỳ�` = I. Since we

assume no channel coding, the size of the constellation isL = 2RT , whereR is the data rate in bits per

channel use. To minimize pairwise probability of error, onewould like the singular values of the products�ỳ2�`1 , `1 6= `2 to be as small as possible. Unfortunately, we do not know of a way to minimize these

singular values, nor can we visualize the properties of a good signal constellation. In constructing a constel-

lation, we note that the pairwise probability of error is invariant to certain unitary transformations, including

left-multiplication by a commonT �T unitary matrix,�` ! 	y�`; ` = 1; � � � ; L, and right-multiplication

by arbitraryM �M unitary matrices,�` ! �`�`; ` = 1; � � � ; L. Constellations that are related in this way

are equally good.
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6.1 Bound ond1 for one transmitter antenna

With a single transmitter antenna (M = 1), the task is to findL unit vectors the magnitudes of whose inner

products(d1)l1;l2 ; `1 6= `2 are as small as possible. As shown in the previous section, there is no direct

relation between the magnitude of the inner product betweentwo complex vectors and their Euclidean

distance. There is a large body of literature on choosing collections of unit vectors that maximize their

pairwise Euclidean distances (see [3] and the many references therein). However, the literature on choosing

vectors that minimize their pairwise correlations appearsto be smaller [10], [12], [22]. Moreover, the

constellation design problem inT -dimensional complex space does not reduce to a design problem in2T -

dimensional real space, becaused1 = j�y2�1j does not equal the magnitude of the inner product between

the real2T -dimensional vectors[Re (�1)T Im (�1)T ] and[Re (�2)T Im (�2)T ].
For given values ofT andL, it is not known how small we can makedmax = maxl1 6=l2(d1)l1;l2 , the

largest pairwise correlation between the signals. However, the following bound is available [10], [12]:L � 1� d2maxk + 1� (T + k)dmax � T (T + 1) � � � (T + k)k! ; (21)

wherek = 0; 1; : : : is a free parameter. Solving this relation, for example, with T = 5 andL = 32 (which

gives 32 signals in 5 time samples, orR = 1 bit/channel use), yieldsdmax � 0:46. Hence, we would like to

choose 32 complex 5-dimensional unit vectors, constituting our constellation, for whichdmax is as close to

0.46 as possible. It is not known how tight the bound (21) is.

6.2 Algorithms for reducing dmax
Starting with any constellation of unit vector signals for asingle transmitter antennaM = 1, we describe a

simple iterative algorithm for reducingdmax:

1. Computedmax, the maximum of the magnitudes of allL(L�1)=2 distinct inner products, and choose

a pair of vectors whose inner product isdmax.

2. “Separate” the pair by moving each vector a small amount inopposite directions along the difference

vector between the pair.

3. Renormalize the pair, if needed.

4. Repeat Steps 1–3 untildmax stops decreasing.
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Using this technique withT = 5 andL = 32 (one bit per channel use) on a constellation of initially

randomly generated unit vectors, we were able to achievedmax = 0:515. We see that we are not very far

from the bounddmax � 0:46. Figure 8 illustrates the correlations between the membersof the constellation,�1; : : : ;�32.
This same algorithm may be generalized to multiple transmitter antennasM > 1 by identifying the pair

of signals whose product yields the singular values that generate the worst (largest) Chernoff bound on error

probability according to (18). “Separating” the signals can be aided by left-multiplying by unitary matrices,

since this operation preserves the orthogonality of the columns in each signal. We omit the details. Figure

9 displays the bit error performance of constellations of unitary space-time modulated signals generated forM = 1 andM = 2 transmitter antennas, each withR = 1 bit/channel use andT = 5. We see that the bit

error probability decreases approximately as1=�2 for high SNR with two antennas, versus approximately

as1=� with one antenna. No attempt was made to assign the data bits to the unitary space-time signals

optimally.

6.3 Adaptation to continuous fading

In certain TDMA, frequency hopping, or interleaving applications, the fading is approximately constant

within a T -symbol block and is independent across blocks. However, ina mobile environment the fading

may change gradually without piecewise jumps. If the fadingprocess changes little within a symbol interval,

one way to model the sampled received signal is to assign an autocorrelation function to the fading coeffi-

cients. One common autocorrelation function is Jakes’, proposed in [9]. It is usually possible to select some

value forT such that the fading is approximately constant overT symbols; in doing so, however, adjacent

blocks ofT symbols may be correlated as in Figure 10. Interleaving blocks ofT symbols could remove this

residual correlation. Instead, we describe a strategy thatexploits the residual correlation betweenT -symbol

blocks with a “seamless” modification to unitary space-timemodulation.

Seamless unitary space-time modulation constrains all theentries in the first and the last rows of�` to

have magnitude1=pT , i.e. j[�`]1mj = j[�`]Tmj = 1=pT , m = 1; � � � ;M . Suppose now that the signal�j
is to be transmitted immediately after the signal�i. Recall that we can right-multiply�j by anyM �M
unitary matrix without affecting its statistical properties at the receiver. Consequently, we can multiply�j
by theM �M diagonal unitary matrix� that makes the first row of�j� equal the last row of�i, i.e.[�j�]1m = [�i]Tm, m = 1; � � � ;M . Then, instead of transmitting allT rows of�j, it is only necessary

to transmit the lastT � 1 rows of�j�. Hence, each signal (except the very first) can be transmitted in
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T � 1 time samples rather thanT , but the receiver can still exploit theT -symbol coherence interval to

demodulate each signal; see [11] for single-antenna codes with this feature. It follows that the size of the

signal constellation can be reduced fromL = 2RT to L = 2R(T�1). For example, withR = 1 half the

number of signals are needed.

It is worth noting that forT = 2 andM = 1 (fading approximately constant in blocks of two symbols,

and one transmitter antenna), this form of seamless unitaryspace-time modulation is equivalent to conven-

tional differential phase-shift modulation. To see this, suppose we wish to transmit one bit per channel use,R = 1. Then, using seamless unitary space-time modulation, we need onlyL = 2R(T�1) = 2 signals in our

constellation, each of which is a2� 1 vector whose first and last entries have magnitude1=p2. Since only

two signals are required, making them orthogonal minimizesd1 = j�y1�2j,�1 = " 1=p21=p2 # ; �2 = " 1=p2�1=p2 # :
Let binary message 0 be represented by�1, and 1 by�2. Suppose we want to transmit a binary 0 across

the channel after having previously sent a 1 represented by�2. Then we would multiply�1 by -1 so that its

first entry matched the last entry of the previously sent�2. We then transmit only the second entry of the

modified�1, which is now�1=p2. Let X1; : : : ;X3 denote the three received symbols corresponding to

the two transmitted data bits. The receiver then usesX1 andX2 to decode the first message bit, andX2 andX3 to decode the second. This modulation-demodulation process is exactly differential binary phase-shift

keying (D-BPSK).

We now assume that the fading is correlated according to a Jakes model [9], with autocorrelation func-

tion J0(2�fdt) whereJ0(�) is the zeroth-order Bessel function of the first kind andfd is the maximum

nondimensional Doppler frequency in cycles/sample period. The fading processes shown in Figure 10 are

generated according to this model. Forfd = 0:01 the first zero of the Bessel function is approximatelyt = 38. On the other hand, fading coefficients five time samples apart have correlation 0.976. Because of

this high correlation, we may safely choose to design our constellation for anyT � 6.

We now look at the performance of seamless unitary space-time modulation to transmit one bit per

channel use (R = 1) across this continuously fading channel. Figure 11 shows the bit error rate for one

(M = 1) and two (M = 2) transmitter antennas, and one receiver antenna. To generate this figure, signal

constellations of size2T�1 were designed forT = 2; : : : ; 6 according to the above principles. The receiver

always decoded using maximum likelihood as if the fading were constant forT symbols. As explained
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above,M = 1 andT = 2 corresponds exactly to D-BPSK, which is shown by the dashed line. WithM = 1
andT = 3; : : : ; 6, the performance varies little withT , and is well approximated by the dashed line. On the

other hand, withM = 2 (two transmitter antennas), the solid lines show that the performance varies greatly

with T . As noted in Section 3, whenM = T , unitary space time modulation is ineffective, and thus the

error probability is 0.5 forT = 2. ForT = 3, 4, and 5, the probability of error decreases monotonicallyvery

quickly asT increases. ForT = 5 and two transmitter antennas, the probability of error is lower than for

one transmitter antenna for all SNR’s greater than 8 dB. Seamless unitary space-time modulation therefore

realizes the diversity advantage of the second transmitterantenna for all reasonably high�. This behavior

is consistent with our information-theoretic justification of unitary space-time modulation for high SNR in

Section 4. The slightly worse performance at high SNR ofT = 6, compared withT = 5, is possibly due to

greater variation of the fading coefficients over six time samples than over five. Further experiments indicate

that because the fading is so fast, increasingT beyondT = 6 degrades the performance even more.

7 Extensions of Theory to Continuous Fading

In the previous section, we successfully modified unitary space-time modulation to work over a fading

channel with a Jakes’ autocorrelation, even though the scheme was originally motivated by a piecewise

constant fading model. In this section, we draw some theoretical conclusions about the optimal signals for

fading channels, where, within each independentT -symbol block, the fading coefficients have an arbitrary

time correlation. We refer to this time correlation as continuous fading. We obtain extensions of Theorems

1 (limiting the number of effective transmitter antennas) and Theorem 2 (structure of signal that achieves

capacity).

Consider the model (1) where, within each block ofT symbols, the fading coefficients now are indepen-

dent, zero-mean, circularly-symmetric, stationary complex Gaussian random processeshtmn. Thus, within

a block ofT symbols, the received signal isxtn =p�=M MXm=1htmnstm + wtn; t = 1; : : : T; n = 1 : : : N: (22)

The fading processes are independent from oneT -symbol block to another, but within each block they are
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correlated according to a known autocorrelation functionk(t)Efht1m1n1h�t2m2n2g = �m1m2�n1n2k(t1 � t2); (23)

wherek(0) = 1. The formula for the conditional probability density (4) still applies but with the modified

covariance matrix � = IT + (�=M)(SSy) �K; (24)

where “�” denotes the Hadamard (i.e., element by element) matrix product, andK is theT � T Toeplitz

covariance matrix,[K]ij = k(i� j). Note that in the former case of piecewise-constant fading,[K]ij = 1.

It is realistic to assume that, within a block, the fading is arandom process. Less realistic is the inde-

pendence of the blocks, but this happens naturally if we assume that the blocklengthT is long compared

with the correlation time of the fading process. For then, the fading between differentT -symbol blocks

is independent, with the possible exception of a small number of samples near the boundaries of adjacent

blocks. The block independence is more likely to be satisfiedin TDMA systems such as IS-54/136, where

a user does not have access to contiguous blocks.

Suppose that the fading autocorrelation function vanishesbeyond some lag� > 0 that we call the

correlation timeof the fading, i.e.,k(t) = 0 for jtj = �; � + 1; : : :. The next theorem extends Theorem 1 to

continuous fading.

Theorem 7 (Limit on number of transmitter antennas in continuous fading) For any correlation time� and

any fixed number of receiver antennas, the capacity obtainedwith M > min(�; T ) transmitter antennas

can also be obtained withM = min(�; T ) antennas.

Proof: Suppose thatM > min(�; T ) and capacity is obtained for some joint probability densityfor the

elements of theT �M matrixS. All but the2min(�; T )� 1 central diagonal bands of the Toeplitz matrixK are zero; that is,[K]ij = 0; ji � jj � min(�; T ). The Hadamard product in (24) therefore causes the

conditional probability density (4) to depend on only the2min(�; T )� 1 central diagonal bands ofSSy. A

covariance-extension theorem in [5] states that one can always find aT � T Hermitian nonnegative-definite

matrixQ whose rank is less than or equal tomin(�; T ), and whose2min(�; T ) � 1 central diagonal bands

are proportional to the corresponding bands ofSSy. Thus, we can find aQ satisfyingQijmin(�; T ) = [SSy]ijM ; 8 ji� jj < min(�; T ):
18
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SinceQ has rank at mostmin(�; T ), it can be factored asQ = S1Sy1, whereS1 is aT �min(�; T ) matrix.

Consequently, for anyT �M matrixS, we can find aT �min(�; T ) matrixS1 such that(S1Sy1) �Kmin(�; T ) = (SSy) �KM : (25)

This relation implicitly specifies a joint probability density for the elements ofS1 in terms of the joint proba-

bility density for the elements ofS. We have the power constraintE tr (S1Sy1)=min(�; T ) = E tr (SSy)=M =T , which has been shown in [8] to achieve the same capacity as the stronger power constraint (2). Usingmin(�; T ) transmitter antennas, we can therefore achieve the same capacity that can be achieved withM
antennas. 2

Few realistic autocorrelation functions vanish absolutely beyond some time lag. For the Jakes model

considered in Section 6.3, the autocorrelation vanishes atjtj = � � 38. This limits the number of transmitter

antennas to approximately 38.

We now determine some of the structure of the capacity-attaining signal in continuous fading. Because

of Theorem 7, we assume thatM � min(�; T ). We define a random processh1; : : : ; hT to becyclically sta-

tionary if ph1;:::;hT (h1; : : : ; hT ) = ph1;:::;hT (h1+t mod T ; : : : ; h1+(T�1+t) mod T ) for all t, whereph1;:::;hT (�)
is the joint density ofh1; : : : ; hT . Intuitively, shifts in time ofh1; : : : ; hT “wrap around” without affecting

their joint distribution, or, equivalently, the periodic extension ofh1; : : : ; hT is a stationary random process

in the ordinary sense. The next theorem is the continuous-fading version of Theorem 2. Because the fading

process is assumed to have less structure than in Theorem 2, the conclusions are weaker. However, the

conclusion that theM transmitted signals should be time-orthogonal remains.

Theorem 8 (Structure of signal that achieves capacity in continuous fading) The capacity attainingS can

be chosen to have mutually orthogonal columns, and have joint density that is unchanged by rearrangements

of its columns. Furthermore, the columns ofS can be made jointly cyclically stationary if the fading is

cyclically stationary.

Proof: The singular value decomposition implies that the capacity-achieving signalS can always be factored

into three termsS = �V	y, where� and	 are unitary matrices andV is real, nonnegative, and diagonal.

Equations (4) and (24) imply that p(X j �V	y) = p(X j �V ): (26)

Dropping the third factor yields a new signalS1 = �V that has the same mutual information asS, and
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whoseM columns are mutually orthogonal.

We now assume that the capacity-achievingS has mutually orthogonal columns. There areM ! ways of

rearranging the columns ofS, each corresponding to post-multiplyingS by aM �M permutation matrixPM`, ` = 1; : : : ;M !. EachSPM` yields the same mutual information asS. Forming an equally-weighted

mixture density for the transmitted signal involving allM ! arrangements of its columns yields a signal

whose probability density is unchanged by rearranging its columns. The concavity of mutual information as

a functional of the input density and Jensen’s inequality together imply that the mutual information for this

mixture is at least as great as that forS.

Let the fading be cyclically stationary. The transmitted signal may be cyclically shifted in time by

pre-multiplyingS by theT � T permutation matrixPT` satisfying[PT`S]tm = s[1+(t�1�`) mod T ]m; t = 1; : : : ; T; m = 1; : : : ;M: (27)

Forming an equally-weighted mixture density for the transmitted signal involving allT cyclic delays yields

a density for the transmitted signal that is jointly cyclically stationary. In other words, the periodic extension

in time ofS is a multivariate (M -component) strict sense stationary random process. We nowargue that the

cyclic shift does not change the mutual information. Recallthe model (22); we apply a cyclic shift in time

of +` to S, and�` toX, to obtainx[1+(t�1+`) mod T ]n = p�=M MXm=1 h[1+(t�1+`) mod T ]mnstm + w[1+(t�1+`) mod T ]n;t = 1; : : : T; n = 1 : : : N:
The cyclic delay does not change the probability density ofW because it is white, and it does not change

the probability density of the fading because it is cyclically stationary. Consequently, the cyclic delay of the

transmitted signal does not change the mutual information between it and the received signal, so Jensen’s

inequality implies that the mutual information for the mixture density is at least as great as that for the

original signal. 2
We make some final observations. First, in the above proof we assume that the fading is cyclically

stationary. This is not restrictive since any wide-sense stationary fading process asymptotically becomes

cyclically stationary asT ! 1 [21]. Second, the role of the block lengthT is secondary to that of the

coherence time� . We impose the constraint that blocks ofT symbols be independent because it allows
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us to use the standard notions of mutual information and channel capacity per block-of-T -symbols. WhenT � � , the capacity per channel use becomes independent ofT , and channel coding could be performed

over the many independent fades that occur in a singleT -block.

At present we are unable to say anything more about the general structure of the mutually orthogonal

cyclically stationary signals that attain capacity. However, using what by now are familiar arguments, we

can infer the structure for the limiting caseT � � � M . One could send training symbols and estimate

the fading coefficients and still have time to send data before the coefficients change. The capacity would

approach the perfect knowledge capacity, the optimum signals would be approximately white Gaussian, so

unitary space-time modulation would be approximately optimal.

8 Conclusions

Multiple element antenna arrays operating in Rayleigh flat fading can potentially sustain enormous data

rates with moderate power in a narrow bandwidth. Our approach to this problem began with the premise

that nobody knows the propagation coefficients and that the available transmission time should be spent

sending message signals rather than training signals. Information-theoretic considerations then led us to

unitary space-time modulation. Preliminary results indicate that this modulation can be highly effective,

even though the receiver never explicitly learns the propagation coefficients.

We have derived performance criteria for unitary space-time modulation and indicated the properties

that a signal constellation with low block probability of error should have. Our particular constellation

designs were ad hoc, however, and the problem of how to designconstellations systematically that have low

probability of error and low demodulation complexity remains open. We have also not considered how to

code across more than one block fading interval. Solutions to these problems are especially urgent for largeT and high data rates.

Acknowledgments.The authors thank H. Landau, J. Mazo, J. Salz, R. Urbanke, andthe late A. Wyner for
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A Appendix: Asymptotic behavior of C as�!1
ForM = N = 1, we show that the mutual information generated by a givenp(v1) can be no more thano(1)
larger than (11), the mutual information generated byp(v1) = �(v1 �pT ), as�!1.
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We start by lettingp(v1) = pa�(v1 � paT ) + pb�(v1 � pbT ) be composed of two masses, wherea = a(�) andb = b(�) are positive functions of� that do not go to zero as� ! 1, but are otherwise

arbitrary. SinceE v21 = T , it must hold thatapa + bpb = 1, and we assume thatpa = pa(�) andpb = pb(�)
are also functions of�. We allowa but notb to go to infinity as� ! 1. (Allowing both would violate

the power constraint.) It is then a simple matter to parallelthe derivation ofCl in (11) to obtain the mutual

informationI = (log e) � ��T � pa ln(1 + �aT )� pb ln(1 + �bT )� ln�(T )� Z 10 q(�) ln�q(�)=�T�1�d��; (A.1)

where q(�) def= pa e��=(1+�aT )�T � 1; �aT�1+�aT ��(T � 1)(1 + �aT ) h �aT1+�aT iT�1 + pb e��=(1+�bT )�T � 1; �bT�1+�bT ��(T � 1)(1 + �bT ) h �bT1+�bT iT�1 :
We look first at the first term in

R10 q(�) ln� d�, which isZ 10 d� pa e��=(1+�aT )�T � 1; �aT�1+�aT ��(T � 1)(1 + �aT ) h �aT1+�aT iT�1 ln� (A.2)

We break the integration into three disjoint ranges:[0; 1=�"], (1=�"; �"], and(�";1) for some arbitrary0 < " < 1. When� 2 [0; 1=�"], �aT�1+�aT ! 0 as�!1, and the expansion(T � 1; z) = zT�1T � 1 +O(zT ); z ! 0 (A.3)

and inequalitye��=(1+�aT ) � 1 therefore yieldZ 1=�"0 d�e��=(1+�aT )�T � 1; �aT�1 + �aT � ln� = O� ln��T"�: (A.4)

Since(T � 1; �aT�1+�aT ) � �(T � 1) for all �,Z �"1=�" d� e��=(1+�aT )(T � 1; �aT�1 + �aT ) ln� � �(T � 1)Z �"1=�" d� ln� = O��" ln��: (A.5)
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When� 2 (�";1), �aT�1+�aT !1 as�!1, and the expansion(T � 1; z) = �(T � 1)� zT�2e�z(1 + o(1)); z !1 (A.6)

gives Z 1�" d�e��=(1+�aT )�T � 1; �aT�1 + �aT � ln�= Z 1�" d� e��=(1+�aT )(ln�)h�(T � 1)�� �aT�1 + �aT �T�2 e� �aT�1+�aT (1 + o(1))i= Z 1�" d� e��=(1+�aT )(ln�)[�(T � 1)�O(e��")]= (1 + �aT )�(T � 1)[1�O(e��")]Z 1�"1+�aT d�e�� ln[�(1 + �aT )]= (1 + �aT )�(T � 1) �[ln(1 + �aT )�  +O� lna�a�1�"�� ; (A.7)

where = 0:5772 : : : is Euler’s constant. Joining (A.2), (A.4), (A.5), and (A.7), and repeating the calcula-

tions for the term involvingpb andb, we getZ 10 d� q(�) ln�T�1 = (T � 1)[pa ln(1 + �aT ) + pb ln(1 + �bT )� ] +O� ln��1�"�; (A.8)

where0 < " < 1 is arbitrary.

We now look at
R10 q(�) ln q(�) d�. The first term isZ 10 d� pa e��=(1+�aT )�T � 1; �aT�1+�aT ��(T � 1)(1 + �aT ) h �aT1+�aT iT�1� ln264pa e��=(1+�aT )�T � 1; �aT�1+�aT ��(T � 1)(1 + �aT ) h �aT1+�aT iT�1 + pb e��=(1+�bT )�T � 1; �bT�1+�bT ��(T � 1)(1 + �bT ) h �bT1+�bT iT�1375 : (A.9)

We break the integration into the same three disjoint rangesas before. For� 2 [0; 1=�"], equation (A.3)

yields e��=(1+�aT ) = 1�O� �1 + �aT � (A.10)
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�T � 1; �aT�1 + �aT � = �T�1T � 1(1 + o(1)): (A.11)

If a = a(�) does not go to infinity, then neither term in the argument of the logarithm in (A.9) dominates

the sum. Ifa(�) goes to infinity, the second term dominates the sum and the logarithm in (A.9) behaves asln(pb�T�1=[(T � 1)�(T � 1)�bT ]) = (T � 1) ln� � ln(�(T + 1)�b) for large�. In either case we may

then mimic the analysis of equation (A.2) to conclude thatZ 1=�"0 d� q(�) ln q(�) = O� ln��1+"�: (A.12)

For� 2 (1=�"; �"], the expansion (A.10) again applies, and equation (A.11) implies that(1 + o(1)) 1(T � 1)�(T�1)" � �T � 1; �aT�1 + �aT � � �(T � 1):
Thus, the logarithm in (A.9) isO(ln�), andZ �"1=�" d� q(�) ln q(�) = O� ln��1�"�: (A.13)

Finally, for � 2 (�";1), we change the variable of integration to�0 = �=(�T ), �0 2 (1=(T�1�");1). It

follows from (A.6) that e��=(1+�aT ) = e��0�T=(1+�aT ) = e�(1+O(1=�))�0=a�T � 1; �aT�1 + �aT � = �T � 1; �2aT 2�01 + �aT �= �(T � 1)� ��2aT 2�01 + �aT �e� �2aT2�01+�aT (1 + o(1))= �(T � 1)�O(e��"):
Hence, q(�) = q(�T�0) = 1�T �paa e�(1+O(1=�))�0=a + pbb e�(1+O(1=�))�0=b��1 + o(1)�;
and Z 1�" d� q(�) ln q(�) = Z 11=(T�1�") d�0 �Tq(�T�0) ln q(�T�0)

24



www.manaraa.com

= � ln�T + Z 10 d� �paa e��=a + pbb e��=b� ln�paa e��=a + pbb e��=b�+ o(1): (A.14)

Combining (A.12)–(A.14), we getZ 10 d�q(�) ln q(�) = � ln(�T )+Z 10 d��paa e��=a+ pbb e��=b� ln�paa e��=a+ pbb e��=b�+o(1); (A.15)

and combining this equation with (A.8) givesI = (log e) � �ln(�T ) + (T � 2)[pa ln(1 + �aT ) + pb ln(1 + �bT )]� T � ln�(T )� (T � 1)� Z 10 d� �paa e��=a + pbb e��=b� ln�paa e��=a + pbb e��=b��+ o(1)= (log e) � �(T � 1)[ln(�T )� ] + (T � 2)[pa lna+ pb ln b]� T � ln�(T )� Z 10 d� �paa e��=a + pbb e��=b� ln�paa e��=a + pbb e��=b��+ o(1): (A.16)

We have thatpa + pb = apa + bpb = 1. Therefore, by Jensen’s theorem,pa lna+ pb ln b � ln(apa + bpb) = 0; (A.17)

with equality if and only ifa = b = 1. Furthermore, as shown in [4], for any densityp(�) supported on� � 0 and satisfying
R10 d� � p(�) = 1,�Z 10 d� p(�) ln p(�) � 1;

with equality if and only ifp(�) = e��. Hence�Z 10 d� �paa e��=a + pbb e��=b� ln�paa e��=a + pbb e��=b� � 1 (A.18)

with equality if and only ifa = b = 1. Thus, forT > 1 and as� ! 1, I is maximized by choosinga = b = 1 with probability one, which collapses the two distinct masses into one atv1 = pT . When
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a = b = 1, thenI = Cl, and from (A.16) we therefore have the expansionCl = (log e)h(T � 1)[ln(�T )� ]� T � ln�(T ) + 1i+ o(1) (A.19)= log�� �Te+1�T�1 1�(T )�+ o(1): (A.20)

SinceCu=T = (log e)e1=�E1(1=�) = log(�=e) +O(1=�), we may also writeC = T � 1T Cu + log��Te �T�1 1�(T )�+ o(1): (A.21)

In our argument for showing that any density with two distinct masses asymptotically generates less

mutual information than a single mass at
pT , we have explicitly prevented one of the two masses from

being located atv1 = 0. We now show that a mass atv1 = 0 must have probability that tends to zero as�!1. As before, we assume that there are two masses, with one atv1 = paT with probabilitypa, but we

place the other atv1 = 0 with probabilitypb. The mutual informationI is then as in (A.1), but withb = 0,

and q(�) = pa e��=(1+�aT )�T � 1; �aT�1+�aT ��(T � 1)(1 + �aT ) h �aT1+�aT iT�1 + pb e���T�1�(T ) :
We analyzeI as in the previous manner, and begin with

R10 q(�) ln�T�1d�. Its first term is the same as

(A.2), yieldingZ 10 d� pa e��=(1+�aT )�T � 1; �aT�1+�aT ��(T � 1)(1 + �aT ) h �aT1+�aT iT�1 ln�T�1 = (T � 1)pa[ln(�aT )� ] + o(1) (A.22)

(Compare (A.8).) The second term isZ 10 d� pb e���T�1�(T ) ln�T�1 = (T � 1)pb�0(T )�(T ) : (A.23)

The integral
R10 q(�) ln q(�) d� is now analyzed. The first term isZ 10 d� pa e��=(1+�aT )�T � 1; �aT�1+�aT ��(T � 1)(1 + �aT ) h �aT1+�aT iT�1 ln264pa e��=(1+�aT )�T � 1; �aT�1+�aT ��(T � 1)(1 + �aT ) h �aT1+�aT iT�1 + pb e���T�1�(T ) 375 :

(A.24)
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We note that the density e��=(1+�aT )�T � 1; �aT�1+�aT ��(T � 1)(1 + �aT ) h �aT1+�aT iT�1
has a maximum value of approximately1=(�aT ), and is effectively supported for� in an interval that

increases linearly with�, beyond which it decays exponentially. On the other hand, the densitye���T�1�(T )
has its maximum valuee�(T�1)(T � 1)T�1=�(T ) at� = T � 1, and decays exponentially as� increases,

independently of�. By breaking the integration in (A.24) into the three usual disjoint ranges (and omitting

the tedious details), we conclude that (A.24) approachesZ 10 d� pa e��=(1+�aT )�T � 1; �aT�1+�aT ��(T � 1)(1 + �aT ) h �aT1+�aT iT�1 ln"pa e��=(1+�aT )�T � 1; �aT�1+�aT ��(T � 1)(1 + �aT ) h �aT1+�aT iT�1#= pa[� ln(�aT )� 1 + ln pa] + o(1) (A.25)

as�!1.

The second term in
R10 q(�) ln q(�) d� isZ 10 d� pb e���T�1�(T ) ln264pa e��=(1+�aT )�T � 1; �aT�1+�aT ��(T � 1)(1 + �aT ) h �aT1+�aT iT�1 + pb e���T�1�(T ) 375

and the same arguments show that this approaches (as�!1)Z 10 d� pb e���T�1�(T ) ln�pb e���T�1�(T ) � = pb[�T + (T � 1)�0(T )=�(T )� ln�(T ) + ln pb]: (A.26)

Combining equation (A.1) with (A.22)–(A.26), we deduce thatI = (log e) [pa(T � 1)[ln(�aT )� ] + pa[�T � ln�(T ) + 1]� pa ln pa � pb ln pb] + o(1):
This expression is clearly maximized by lettingpa(�) ! 1 as� ! 1. Hence, any mass atv1 = 0 in the

capacity-achieving distribution must have probability that decays to zero as�!1.

We have been focusing onp(v1) with two distinct masses, and now outline how to generalize the
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above arguments to show that anyp(v1) asymptotically generates less mutual information thanp(v1) =�(v1 � pT ). First note that the expansion (A.16) can be immediately generalized ton massesp(v1) =Pnj=1 pj�(v1 �pajT ), to obtainI = (log e) � �(T � 1)[log(�T )� ] + (T � 2) nXj=1 pj lnaj � T � ln�(T )� Z 10 d� � nXj=1 pjaj e��=aj� ln� nXj=1 pjaj e��=aj��+ o(1): (A.27)

Provided thata1; : : : ; an are taken from some finite positive interval, the asymptoticexpansion (A.27) is

uniform, and hence remains valid even if we letn become unbounded (say, as a function of�). As � !1, the mutual information in (A.27) is therefore maximized byhavinga1; : : : ; an ! 1, which reduces

the multiple masses to a single mass atv1 = pT . On a finite interval, we can uniformly approximate

any continuous density with masses, and becauseI is concave inp(v1) (see [8]), we can approximateI
arbitrarily closely as well (we are here overlooking many technical details about optimizing in an infinite-

dimensional space). The preceding argument therefore tells us that we are asymptotically better off replacing

the continuous density on this finite interval with a mass atv1 = pT .

B Appendix: Two-Signal Pe for H Unknown—Exact and Chernoff Upper

Bound

From (15), the probability of error when�1 is transmitted isPej1 def= P� �T=M1 + �T=M tr fXy(�2�y2 � �1�y1)Xg > 0 j �1� ; (B.1)

where the multiplicative factor(�T=M)=(1+�T=M) is included to simplify the algebraic manipulations in

this section. Using the singular value decomposition,�y2�1 = �D�y; (B.2)
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where� and� areM�M unitary matrices, andD = diag(d1; : : : ; dM ) is diagonal, real, and nonnegative,

we rewrite (B.1) asPej1 = P� �T=M1 + �T=M tr fXy(�2��y�y2 � �1��y�y1)Xg > 0 j �1�= P�tr fY y2 Y2 � Y y1 Y1g > 0 j �1� ; (B.3)

where 24 Y1Y2 35 = Y = � �T=M1 + �T=M�1=2 24 �y�y1�y�y2 35X:
TheN columns ofX are independent, identically distributed zero-mean complex Gaussian vectors with

covariance matrixIT+(�T=M)�1�y1. Consequently theN columns ofY are also independent; any columnyn has2M � 2M covariance matrixE fynyyn j �1g = 24 (�T=M)IM (�T=M)D(�T=M)D �T=M1+�T=M [IM + (�T=M)D2] 35 : (B.4)

Note that this covariance matrix depends on�1 and�2 only through the singular value matrixD. We

conclude thatPej1 depends only onD. If we were to interchange�1 and�2, D would be unchanged, and

thusPe = Pej1 = Pej2.
From (B.2), we have thatD = (�2�)y(�1�). The matrices�2� and�1� each compriseM orthogonal

unit vectors, implying that everyd1; : : : ; dM is equal to an inner product between unit vectors. Consequently,0 � dm � 1.

B.1 ExactPe
We obtain a closed-form expression for the probability of error by inverting the characteristic function oftr fY y2 Y2�Y y1 Y1g. The use of the characteristic function for this type of calculation is well-known [14, 16].

Equation (B.3) may be written asPe = P NXn=1 MXm=1(jym+M;nj2 � jym;nj2) > 0 j �1! : (B.5)
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The structure in equation (B.4) implies thatY comprisesMN statistically independent pairs of correlated

random variables,f(ym;n ym+M;n); m = 1; : : : ;M; n = 1; : : : ; Ng, with covarianceE0@24 ym;nym+M;n 35h y�m;n y�m+M;n i �����11A = 24 �T=M (�T=M)dm(�T=M)dm �T=M1+�T=M [1 + (�T=M)d2m] 35 ;
wheredm is themth diagonal entry ofD, and this covariance does not depend onn. The characteristic

function for each independent term in (B.5) is thereforeE �expf�i!(jym+M;nj2 � jym;nj2)g j �1�= det�10@I + i!24 �T=M (�T=M)dm(�T=M)dm �T=M1+�T=M [1 + (�T=M)d2m] 3524 �1 00 1 351A= 1 + �T=M(�T=M)2(1� d2m) �!2 � i! + 1 + �T=M(�T=M)2(1� d2m)��1= 1 + �T=M(�T=M)2(1� d2m)[(! � i=2)2 + a2m] (B.6)

whendm < 1, where am def= s14 + 1 + �T=M(�T=M)2(1� d2m) :
Whendm = 1, the characteristic function is identically one for all!.

The region of convergence of the expectation in (B.6) is12 � am < Im(!) < 12 + am. The characteristic

function of tr fY y2 Y2 � Y y1 Y1g is the product of theM terms (B.6) raised to theN th power. We invert the

characteristic function, artfully choosing a particular integration contour within its region of convergence to

obtain the error probability asPe = 12� Z 10 dz Z 1+i=2�1+i=2 d! exp(i!z) � MYm=1E �expf�i!(jym+M;nj2 � jym;nj2)g j �1� (B.7)= � 12�i Z 1+i=2�1+i=2 d! 1! MYm=1dm<1 � 1 + �T=M(�T=M)2(1� d2m)[(! � i=2)2 + a2m]�N :
The exponential decay of the inner integral in (B.7) asz ! 1 for Im (!) = 1=2 justifies the above
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interchange of integration. With a change of variables, we obtainPe = � 12�i Z 1�1 d! 1! + i=2 MYm=1dm<1 � 1 + �T=M(�T=M)2(1� d2m)(!2 + a2m)�N ; (B.8)

where the integration is now along the real axis. We close thecontour of integration from the positive

real axis to the negative real axis with a semicircle sweeping the entire upper-half complex plane in a

counterclockwise direction. Since each term in the productin the integrand decays for largej!j as1=j!j2N ,

the semicircle itself does not contribute to the total integral but encloses all the integrand’s upper-half plane

polesia1; : : : ; iaM . The integral may therefore be evaluated by Cauchy’s theorem;Pe =Xj Res!=iaj 8><>:� 1! + i=2 MYm=1dm<1 � 1 + �T=M(�T=M)2(1� d2m)(!2 + a2m)�N9>=>; : (B.9)

This is equation (17).

We evaluate this expression for the special case of equal singular valuesd1 = : : : = dM = d < 1. In

this case, we must evaluate the residue of an orderMN pole,Pe = � � 1 + �T=M(�T=M)2(1� d2)�MN 1�(MN) � dMN�1d!MN�1 1(! + i=2)(! + ia)MN �!=ia :
The following easily verified identity,dkd!k 1(! + i=2)(! + ia)MN = (�1)k kXj=0 �(MN + k � j)�(k + 1)�(MN)�(k + 1� j) � (!+ i=2)�(1+j)(!+ ia)�(MN+k�j);
for k =MN � 1 givesPe = � 1 + �T=M(2 + �T=M)2 � (�dT=M)2 �MN�MN�1Xj=0 �(2MN � 1� j)�(MN)�(MN � j) " 2p(2 + �T=M)2 � (�dT=M)2(�T=M)(1 � d2)1=2 +p(2 + �T=M)2 � (�dT=M)2 #1+j :
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B.2 Chernoff upper bound and monotonicity

We evaluate the Chernoff upper bound in an unconventional but concise way. SincePe is real-valued, we

take the real part of (B.8) to obtainPe = 14� Z 1�1 d! 1!2 + 1=4 MYm=1dm<1 � 1 + �T=M(�T=M)2(1� d2m)(!2 + a2m)�N ;= 14� Z 1�1 d! 1!2 + 1=4 MYm=124 11 + (�T=M)2(1�d2m)(!2+1=4)1+�T=M 35N (B.10)� 14� Z 1�1 d! 1!2 + 1=4 MYm=124 11 + (�T=M)2(1�d2m)4(1+�T=M) 35N= 12 MYm=124 11 + (�T=M)2(1�d2m)4(1+�T=M) 35N ; (B.11)

which is (18). It turns out that (B.11) is, in fact, exactly the Chernoff bound obtained by computing (see,

e.g. [21]) Pe � 12e�(�);
where �(�) = lnE fexp [� (ln p(X j �2)� ln p(X j �1))] j �1g ;
and where0 � � � 1 is a free parameter that is chosen to minimize�(�). To help see this, we note that�(�)
is merely the logarithm of the previously computed characteristic function for! = i�, and is minimized at� = 1=2. The exact expression forPe is derived in (B.8) by integrating the characteristic function along the

line Im (!) = 1=2. This process “tilts” the likelihood ratio by just the rightamount needed to obtain (B.11)

as the Chernoff bound.

Finally, to see that decreasing anydm decreases the total error probability, observe that, for any !, the

integrand in (B.10) decreases asdm decreases.
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C Appendix: Two-Signal Pe for H Known—Exact and Chernoff Upper

Bound

We follow the same strategy as in Appendix B, and therefore abbreviate the discussion. WithH known,

albeit random, the average error probability, given that�1 is transmitted, isPej1 = P��tr �hX � (�T=M)1=2�2Hi hX � (�T=M)1=2�2Hiy� hX � (�T=M)1=2�1Hi hX � (�T=M)1=2�1Hiy� > 0 j �1�= P�tr �h(�T=M)1=2(�2 � �1)H +W i h(�T=M)1=2(�2 � �1)H +W iy +WW y� > 0� :
We use the singular value decomposition,�2 � �1 = ��
y, where� is diagonal, real, and nonnegative,

and� and
 are unitary matrices. BecauseH and
yH have the same distribution, andW and�W have

the same distribution, we have thatPej1 = P�tr �h(�T=M)1=2�H +W i h(�T=M)1=2�H +W iy +WW y� > 0� : (C.1)

The probability of error only depends on the singular values, and hencePe = Pej1 = Pej2. The singular

value decomposition implies that� = �y�2
 � �y�1
, or �m = [�y�2
]mm � [�y�1
]mm, where the

columns of each of the bracketed matrices are orthonormal unit vectors. Consequently0 � �m � 2.

C.1 ExactPe
As in Appendix B, we take the characteristic function of the log-likelihood ratio (the expectation being with

respect toH as well asW ), and we obtain the probability of error as the integralPe = � 12�i Z 1+i=2�1+i=2 d! 1! MYm=1 � 11 + (!2 � i!)(�T=M)�2m �N= � 12�i Z 1+i=2�1+i=2 d! 1! MYm=1�m>0 � 1(�T=M)�2m[(! � i=2)2 + �2m]�N= � 12�i Z 1�1 d! 1! + i=2 MYm=1�m>0 � 1(�T=M)�2m(!2 + �2m)�N (C.2)
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= Xj Res!=i�j 8><>:� 1! + i=2 MYm=1�m>0 � 1(�T=M)�2m(!2 + �2m)�N9>=>; ;
where �m =s14 + 1�T�2m=M :
This proves equation (19).

For the special case where�1 = : : : = �M = �, we have the exact expressionPe = 1(4 + �T�2=M)MN MN�1Xj=0 �(2MN � 1� j)�(MN)�(MN � j) " 2p4 + �T�2=Mp�T�2=M +p4 + �T�2=M #1+j :
C.2 Chernoff upper bound and monotonicity

As in Appendix B, the Chernoff bound is computed by applying an elementary inequality to the exact

probability of error (C.2). The result isPe = 14� Z 1�1 d! 1!2 + 1=4 MYm=1�m>0 � 1(�T=M)�2m(!2 + �2m)�N= 14� Z 1�1 d! 1!2 + 1=4 MYm=1 � 11 + (�T=M)�2m(!2 + 1=4)�N (C.3)� 14� Z 1�1 d! 1!2 + 1=4 MYm=1" 11 + �T4M �2m#N= 12 MYm=1 " 11 + �T4M �2m#N ;
which is (20).

Finally, to see that increasing any�m decreases the total error probability, observe that, for any !, the

integrand in (C.3) decreases as�m increases.
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Figure 1: Normalized capacity, and upper and lower bounds, versus SNR� (T = 2, one transmitter and one
receiver antenna). The lower bound and capacity meet as�!1. However, unlike the case whereT !1,
the capacity never meets the perfect-knowledge upper bound.
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Figure 2: Normalized capacity, and upper and lower bounds, versus SNR� as in Figure 1, but withT = 5.
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Figure 3: Two-signal probability of error vs. SNR for one transmitter and one receiver antenna (M = N =1), T = 5, andd = 0:0, 0.4, 0.8.
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Figure 4: Two-signal probability of error vs. correlationd1 for one transmitter and receiver antenna (M =N = 1), T = 5, and SNR=0, 10, 20 dB.
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Figure 5: Two-signal probability of error vs. SNR for two transmitter antennas and one receiver antenna
(M = 2,N = 1), T = 5, andd1 = d2 = d = 0:0, 0.4, 0.8.
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curves) transmitter antennas, one receiver antenna (N = 1), T = 5, andd = 0:0, 0.8.
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Figure 7: Two-signal probability of error vs. SNR forH unknown (d = 0) compared withH known
(� = 1:414 : : :), and one transmitter and one receiver antenna (M = N = 1), andT = 5.

43



www.manaraa.com

5
10

15
20

25
30

5

10

15

20

25

30

0

0.2

0.4

0.6

0.8

1

Signal index

Signal index

M
ag

ni
tu

de
 o

f c
or

re
la

tio
n

Figure 8: Magnitudes of correlations between�1; : : : ;�32 for T = 5. The diagonal entries with value 1.0
represent each signal correlated with itself.
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Figure 9: Performance of unitary space-time constellations forM = 1 versusM = 2 transmitter antennas
for T = 5 as a function of SNR�, with R = 1 bit/channel use.

45



www.manaraa.com

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time sample

M
ag

ni
tu

de

Figure 10: Magnitude of two typical independent realizations of a Jakes fading process withfd = 0:01
cycles/sample.
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Figure 11: Unitary space-time modulation performance for one (dashed line) and two (solid lines) transmit-
ter antennas sendingR = 1 bit per channel use with constellations designed forT = 2; : : : ; 6. The fading
is a Jakes process withfd = 0:01 cycles/sample and there is one receiver antenna. The one-antenna prob-
ability of error varies little withT and is well-approximated by the D-BPSK dashed line. The two-antenna
probabilities of error vary greatly withT . The best overall performance for high SNR occurs forT = 5.
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