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Abstract

Motivated by information-theoretic considerations, wegwse a signalling schemenitary space-
time modulationfor multiple-antenna communication links. This modudatis ideally suited for Rayleigh
fast-fading environments, since it does not require theivec to know or learn the propagation coeffi-
cients.

Unitary space-time modulation uses constellatiorE af)M space-time signals®,, ¢ =1,...,L},
whereT represents the coherence interval during which the fadimgpproximately constant, add <
T is the number of transmitter antennas. The columns of @acére orthonormal. When the receiver
does not know the propagation coefficients, which betweas pétransmitter and receiver antennas are
modeled as statistically independent, this modulatiofopers very well either when the SNR is high or
whenT' > M.

We design some multiple-antenna signal constellationsandlate their effectiveness as measured
by bit error probability with maximum likelihood decoding/e demonstrate that two antennas have a 6
dB diversity gain over one antenna at 15 dB SNR.

Index Terms-Multi-element antenna arrays, wireless communicatiohannel coding, fading chan-
nels, transmitter and receiver diversity, space-time ntettthn
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1 Introduction

Fading is traditionally regarded as a nuisance by the desigaf wireless communications systems. Its
effects are often mitigated by some combination of difféedphase modulation, interleaving, or the trans-
mission of pilot or training signals [1]. But, paradoxigallRayleigh flat fading can be beneficial for a
multiple-antenna communication link. It is shown in [6, 1Bat, in a Rayleigh flat-fading environment, a
link has a theoretical capacity that increases linearlhhe smaller of the number of transmitter and re-
ceiver antennas, provided that the complex-valued pramagaoefficients between all pairs of transmitter
and receiver antennas are statistically independent amwrkio the receiver.

However, learning the fading coefficients becomes incngggidifficult as either the fading rate or
number of transmitter antennas increases. In an efforcie@ase channel capacity or lower error probability,
it is accepted practice to increase the number of transnaitteennas (thereby gaining “diversity” [9], [15]).
But increasing the number of transmitter antennas inceetiserequired training interval and reduces the
available time in which data may be transmitted before tloinfa coefficients change. At vehicle speeds
of 60 miles/hour, a mobile operating at 1.9 GHz has a fadirdgeoence interval of about 3 ms, which for a
symbol rate of 30 kHz corresponds to a fresh fade every 50s¢6ol periods. If several training symbols
per transmitter antenna are needed, the coefficients fgraféw antennas can be learned before a fresh
fade occurs. Next-generation cellular systems in Europieb@iexpected to operate under very fast fading
(trains moving at speeds up to 500 km/hr [20]) and hence it beympractical to learn even the single
coefficient between one transmitter and one receiver aatenn

Motivated by these considerations, we used Shannon thed®j ito analyze multiple-antenna links
without imposing any training schemes and with no assumetvlaudge of the random fading coefficients.
The complex fading coefficients between all pairs of trattenand receiver antennas were modelled as in-
dependent with uniformly distributed phases and Rayleigtriduted magnitudes. The fading coefficients
were piecewise constant over fixed time intervals, with cleheoding performed over many such indepen-
dent fading intervals. We showed that the channel capaocitidmot be increased by making the number of
transmit antennas greater than the length of the fadingvisiteand found that the capacity-attaining signals
had considerable structure. However, we did not explicitidress the problems of modulation and channel
coding. In this paper, we use the structure derived in [8] wiivate a particular space-time modulation
scheme.

The information-theoretic results in [8] suggest a sigraistellation comprising complex-valued sig-
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nals that are orthonormal with respect to time among thestrater antennas. We call this signalling
schemeunitary space-time modulationWhen viewed as vector functions of time, the signals cdngy t
message information entirely in their directions. In thégpr, we explain in detail how to create, modulate,
and demodulate unitary space-time modulation on a muléiptenna link operating in Rayleigh flat fading.
Throughout most of the paper the propagation coefficie@assumed to be unknown to the receiver, but we
also show how to use the modulation when the coefficientsraoesik. When the receiver does not know the
coefficients, no attempt to learn them is made. We concentrainodulation and constellation design, and
do not address coding issues that lower error probabilitgding redundancy. We focus, instead, on raw or
uncoded signal and bit error probabilities. When combinét appropriate channel coding, our proposed
signal constellations can theoretically attain a hightfaacof the channel capacity. Some multiple-antenna
coding issues for receivers that know the channel apped8h [

Section 2 presents the signal model and operating assumptod Section 3 reviews the information-
theoretic foundations for unitary space-time modulatibmSection 4, we extend the information-theoretic
justification by arguing that unitary space-time modulai®nearly optimal when the signal-to-noise ratio is
high. In Section 5, we consider the use of unitary space-timdulation to transmit data across a multiple-
antenna link, and discuss maximum likelihood demoduladiod the properties a good constellation should
have. In Section 6 some signal design issues are treatednanidons of a two-transmitter-antenna system
are presented. We extend some of the piecewise-constamy tisecontinuous fading in Section 7.

The following notation is used throughout the pagdeg; = is the base-two logarithm af, while In z is
basee. Given a sequenda, bo, . . . , of positive real numbers, we say that = O(b,,) asn — oo if |a,|/b,
is bounded by some positive constant for sufficiently latgere say that,, = o(by,) if lim,,_, o0 ay, /b, = 0.
Two complex vectorsg and b, are orthogonalif a'b = 0, where the superscript denotes “conjugate
transpose.” The mean-zero, unit-variance, circulariyusetric, complex Gaussian distribution is denoted
CN(0,1).

2 Multiple-Antenna Link: Signal Model

Consider a communication link comprisidg transmitter antennas and receiver antennas that operates
in a Rayleigh flat-fading environment. Each receiver arder@sponds to each transmitter antenna through
a statistically independent fading coefficient that is ¢ansfor 7' symbol periods. The received signals

are corrupted by additive noise that is statistically iretggent among thé&/ receivers and th&' symbol
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periods. In complex baseband representation, durin@'tegmbol interval we transmit the signgd;,,,, t =
1,...,7, m=1,..., M}, and we receive the noisy signgt;,, t =1,...,7, n=1,..., N} related by

the equation

M
xm:,/p/Mthnsthrwm, t=1,...T, n=1...N. (1)
m=1

Hereh,,, is the complex-valued fading coefficient betweennbtl transmitter antenna and théh receiver
antenna. The fading coefficients are constanttfer 1,...T, and they are independent with respectrto

andn andCN (0, 1) distributed, with density

1
p(hmn) = ; €xp {*‘hmn|2} .

The transmitted signal has an average (overithantennas) expected power equal to one,

1 M
MZE|stm|2:1, t=1,...,T. (2)

m=1

The additive noise at timeand receiver antennais denotedw,,,, and is independent (with respect to both
t andn), identically distributed’ \'(0,1). The quantities in the signal model (1) are normalized sb tha
represents the expected signal-to-noise ratio (SNR) &t emeiver antenna, independently of the number
of transmitter antennas. We assume that the realizatiohs,pf m = 1,...,M,n = 1,..., N are not
known to the receiver or transmitter.

We use matrix notation for the transmitted sig$a(7" x M), and the received sign& (7' x N).
Conditioned onS, the received signak has independent and identically distributed columns &xctbe
N antennas); at a particular antenna, Thesceived symbols are zero-mean circularly-symmetric derp

Gaussian, witll’ x T' covariance matrix
A= It + (p/M)SS", ©)

wherelr is theT x T identity matrix. The received signal has conditional piuiliy density,

exp (ftr {A’]XXT})

7N detN A

p(X |8) = ; (4)

where “tr" denotes the trace function.
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We assume, for now, that the fading coefficients change tamégpendent realizations evefysymbol
periods. This piecewise constant fading process mimica,tractable manner, the behavior of a continu-
ously fading process. Furthermore, it is a very accurateesgmtation of many TDMA, frequency hopping,
or block-interleaved systems [13]. We consider continuaoling processes later. Each channel use (con-
sisting of a block ofl" transmitted symbols) is independent of every other. That dan be transmitted
reliably at any rate less than the channel capacity, wheredpacity is the least upper bound on the mutual
information betweernX andS, or

C =supI(X;59),
p(S)

subject to the average power constraint (2), and where

o p(X | S)
[(X;5) = Blog= 5=
_ /dSp(S)/pr(X o log{ fdsi(();n'v(i)( | S’>}' X

The capacityC' is measured in bits per block @fsymbols. In general, one must code across multiple blocks

to achieve capacity.

3 Summary of Known Capacity Results

The conditional density (4) has considerable symmetryragyisom the statistical equivalence of each time-
sample and of each transmitter antenna. The special piepeftthe conditional density, in combination
with the concavity of the mutual information functionalateto some general conclusions [8] that are sum-

marized here.

3.1 Capacity limited by length of coherence interval; struture of capacity attaining signals

Theorem 1 (Limit on number of transmitter antennas) For any cohereinterval T and any fixed number
of receiver antennas, the capacity obtained with> T' transmitter antennas equals the capacity obtained

with M = T transmitter antennas.
In what follows we assume thatfl < T..

Theorem 2 (Structure of signal that achieves capacity) A capacitiii@ging random signal matrix may be

constructed as a produ& = @V, where® is an isotropically distributed” x M matrix whose columns are

4
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orthonormal, andV is an independend/ x M real, nonnegative, diagonal matrix. Furthermore, we can

choose the joint density of the diagonal elementg ¢d be unchanged by rearrangements of its arguments.

An isotropically distributedunit vector has a probability density that is unchanged whenvector is
left-multiplied by any deterministic unitary matrix. Sikaily, the isotropically distributed” x M matrix ®
obeys®® = I, and has a density that is unchanged when it is left-mudtipliy anyZl’ x 7" unitary matrix.
In a natural way,® is the matrix counterpart of a complex scalar having unit nitagle and uniformly

distributed phase. The joint probability density®in terms of itsM columnsgy, ..., ¢ is [8]

M

m=1 my,mo
my>my

p(®) =

whered(-) is the Dirac delta function defined for complex argumentsaté(b) = d(Re {-}) - d(Im {-}), and
dmym, 1S ONE Whenn; = my and is zero otherwise. Substituting the structufeihito (5) and performing

some simplification yields

M 2

. - N PYm

I(X;8) = ~TNloge - N mz_lElog(1+ M)
min(N,T)
[ axen) £ [l f) - oge) - >S n], ™
(=1
wherevy, ..., vy are the nonnegative real diagonal entrie$/of
def |4

min(N,T")

-/d@p(@)-exp{ Z ZM (MTW ) '¢€m2}a (8)

and N
"“”(N DY min(N,T -
def ¢ 2= : (Hézl( )/\E> e (Xi = A5)7
p(A) = min(N, 1) . 9)
I[I,-, 7'T(T—2+1)- (N —£+1)
In the abovep(V) denotes the joint density o, ..., var, and \ ¢ [Al, -+ Amin(n,ry)- Computing

the channel capacity requires maximizin@X; .S) with respect to the joint probability density of the

nonnegative real diagonal elementslaflt is shown in [8] that we may choodgvi = ... = Evi, =T.
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The transmitted signal has the partitioned fosm= | ;¢ --- wyé |, Where theM columns,
representing the temporal signals fed into fMaransmitter antennas, are mutually orthogonal. As we will
argue, for eithefl” > M, or for high SNR andl’ > M, settingv; = ... = vy = /T, which we call

unitary space-time modulatioachieves capacity.

3.2 Capacity bounds

An upper bound on capacity is obtained if we assume that #ever is provided with a noise-free mea-

surement of the propagation coefficieifs This perfect-knowledgepper bound is [6], [19]
C, =T -E logdet | Iy + %HTH (10)

per block ofT" symbols. Wherff is known to the receiver, the perfect-knowledge capacityniolds achieved
with transmitted signab whose elements are independéif (0, 1). For the special cask/ = N = 1 the
perfect-knowledge capacity upper bound’is = T'(log e)e!/?E (1/p), whereE, (z) & &= dyisthe
exponential integral
A lower bound on capacity that we dendtk is obtained by assigning unit probability massvto=
.. = vy = /T, substituting this mass function into (7), and integrativith respect td/. For the special
caseM = N = 1, the integration ove® in (8) can be performed analytically to yield the capacityéo

bound

Cy = —Tloge — log(1 + pT)
=2/ (1+pT T\
/oo (T = 1)e M@0y (T - 1, £
0 F(

T)(1 + pT) []ﬂLpT}T 1

oM (1+pT) T
(T —1)e M+ ( _1’1’iHJT

log

)](D\, (11)

T—1
2
(1+pT) |:14Tp71i|

def

wherey(T, z) = fUZ q" ~'e~%dq is theincomplete gamméunction. The next theorem, proven in [8], says

thatC,/T — C/T — C, /T, and the capacity-achieving distribution«afis a unit mass a{/T, asT’ — oc.
3.3 Asymptotic capacity and signal structure for7” > M

Theorem 3 (Capacity, asymptotically i) Let M = N = 1. The capacity has the asymptotic expansion

(log e)e/PE, (1/p) — o(,/“#) — O))T < CJT < Cu)T = (loge)e/?E,(1/p), asT — oc. This
capacity is achieved @6 — oo by settingu; = /T with probability 1.
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Heuristic considerations suggest strongly that Theorextéhels in a reasonable way to multiple trans-
mitter and receiver antennas. Althoughis unknown to the receiver, & becomes large we could reserve
a small portion of the coherence interval to send training fl@m which the receiver could estimatg, so
C/T should approachty’, /T asT — oo and this capacity would be attained by a transmitted signahose
components are approximately independeht(0, 1). To demonstrate theft = +/7'®, where®'® = I and
& is isotropically distributed, attains capacity, we notetthsT” — oo the entries of5 have distributions that
approach independeai\'(0, 1) (see [8]). On the other hand, whéi = T, settingv; = ... = vy = VT
is not useful; in this case§ST = 7- ®df = T I, sop(X | S) = p(X) and no information is transmitted.

In what follows we always assume thiat < T'.

4 Unitary Space-Time Modulation and High SNR

Unitary space-time modulation defined

The key results of the previous section say that: 1) Ther®@ipaint in making the number of transmitter
antennas greater than the duration of the coherence iht@)W&/hen the duration of the coherence interval
is significantly greater than the number of transmitter anés " > M), settingv; = ... = vy = VT
attains capacity. Taking our cue from these consideratioms defineunitary space-time modulatioto

be the transmission & = /T'®, where®'® = . The previous section argues that unitary space-time
modulation attains capacity far > M. We now argue that unitary space-time modulation is optiated

for any fixedT > M, asp — oo. The following result, for the special cagd¢ = N = 1, shows that letting

v = /T with probability one achieves capacity asymptoticallypas oo for any fixedT > 1.

Theorem 4 (Capacity, asymptotically ip) Let M = N = 1 andT > 1. The capacity has the asymptotic

expansions
_ T-1
Cc = %Ca +log[(§> ﬁ} +0(1) 12)
T-1
_ 1og[(e'f]> F(]‘TJ +o(1) (13)

asp — oo, wherey = 0.5772... is Euler's constant. This capacity is achievedas—» oo by setting

v, = /T with probability 1.

Proof: See Appendix A.
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Figure 1 displays, fod = N = 1 andT = 2, the exact capacity (obtained with the Blahut-Arimoto
algorithm [2], [8]), the perfect-knowledge upper bound)(itBe lower bound (11), and the expansion (12)
as a function ofp. Figure 2 is similar, except th& = 5, and we see that the lower bounds, asymptotic
expansions, and capacities are essentially the same f@N#&l's greater tha® dB. Unlike the case in
Theorem 3 wherd” — oo, whenp — oo we see that the capacity diverges away from the upper bound.

It is worth attempting to find an intuitive explanation for&rem 4. The first term in (12) appears to
be consistent with the strategy of sending a single knownitrg symbol from which the receiver obtains
a very accurate estimate for the fading coefficient, and th@msmitting the remainind” — 1 symbols
as if the fading coefficient were known to the receiver. Thpacity thus obtained would correspond to
approximatelyT’ — 1 perfect-knowledge channel uses, giving rise to the firshter (12); the remaining
terms can be viewed as the penalty for estimating the fadiedficient imperfectly.

But this appealing argument does not explain why unitancegine modulatiors = +/7'®, which
has no explicit training, achieves capacity. Insteads let v®, wherev obeysE v? = T but is otherwise

arbitrary, and consider the high-SNR received signal,

x ~ \/pvh®,

wherez and® areT-dimensional vectors. The unit vectdr apart from its overall phase, can be determined
very accurately frome, regardless oh. However, the scalar amplitudecannot be determined so easily
because it is multiplied by the unknown scatarHence, when the SNR is high, transmitting information
on ® appears to be more profitable than transmitting ofihis suggests that we should simply set /7.
Note that both this argument and Theorem 4 apply only i 1.

A similar intuitive argument suggests that Theorem 4 alddtor multiple transmitters and receivers;

that isvy, ..., vy — VT asp — oo. For high SNR and” > M, the signal at theith receiver antenna is
M

Tn =\ ,O/M Z Vi Pmn Pms (14)
m=1

where z,, and ¢,,, are T'-dimensional vectors. Even for a very high SNR we cannotheastermine
v1,...,vy because they are multiplied by the unknown fading coeffisién,,, .. ., har,. However, the
columns of® span anM/ -dimensional subspace of tliedimensional complex vector space. In this vector

space, the subspace is a hyperplane, and any two sign@lad ®; that generate nonidentical subspaces
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yield two distinct hyperplanes that intersect on some legisrensional hyperline. The probability af,
falling on one of these intersections is zero. Hence, inddeetly ofh,,,, for high SNR we can perfectly
distinguish®; from @; as long as their columns do not span the same subspace. (Véasteate this effect
in the next section by calculating the probability of mistakone for the other.) Nevertheless, we do not
have a proof that, ...,vy — VT asp — oo, for M > 1.

In short, when eithef” >> M, or p is large withT > M, information-theoretic arguments say that
the modulation ofvy, ..., vy IS neither very interesting nor very useful. Rather one &haise unitary
space-time modulation, wherg = - -- = vy; = v/T and where all message information is transmitted on
the directions of the orthonormal columns ®f While information-theoretic arguments implicitly regei
the use of channel codes to attain capacity, we now congidarde of unitary space-time modulation in an

uncoded form, and find design rules that help us generate gaustellations of these signals.

5 ML Receiver for Unitary Space-Time Modulation

We now consider maximum likelihood (ML) reception of a catfisition of L signals employing unitary

space-time modulation,

Sy =VT®, ¢=1,...,L,

where{®,, ¢/ =1,..., L} areT x M complex matrices satisfyin@}cbg = I. Ignore, for the moment, the
problem of how to generate such a constellation. We derwévth receiver and its performance wheéhis
unknown and, for comparison, wheh is known to the receiverH{ is never known to the transmitter). It is

customary to call the former receiver noncoherent and therleeceiver coherent.

5.1 Channel unknown to receiver

Maximum likelihood decoding becomes

d,1 = ar max X | o
1 g¢z€{¢1,---,¢L}p( )

R

= arg  max
¢[E{¢‘1,...,¢‘L} 7TTN detN |:IT + (pT/M) @[@}}
exp (—tr { [IT — W@@H XXT})
B RS 7N (1 + pT'/M)MN
9
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= ar max tr {XT®,0! X , 15
géle{q)l,...,‘t‘[/} { ¢ £ } ( )

where the matrix formulaget(/ + AB) = det(I + BA) and(A + BCD)™ ' = A™! — A7'B(C! +
DA 'B)"'DA"! are used [17]. The ML receiver seeks to maximize the energyaowed in theM N
inner products that comprisE}X.

Suppose now that. = 2, and®, and &, are transmitted with equal probability. The probability of

decoding error is then

P(tr {XT®, 01X} > tr {XT®,®] X} | &y transmitted). (16)

As we show in the next theorem, the probability of error givleat &, is transmitted is equal to the proba-
bility of error given that®, is transmitted, and, has a closed-form analytical expression that depends only

on the singular values of thief x M matrix <I>£<I>1.

Theorem 5 (Two-signal error probability: H unknown) Suppose that two unitary space-time modulation
signals ®; and &, are transmitted with equal probability, and decoded withMh receiver. Then the

probability of error is

M N
1 1+ pT/M
PP: Sw=ia; T o ’ 17
=Yoot 1 G oo 0

dm <1

wherel > dy > ... > djs > 0 are the singular values of th&l x M matrix '@;@1, and

Ay —

4 (pT/M)*(1 —dz,)

def \/1+ 1+pT/M

Furthermore,P, decreases as any,, decreases, and has Chernoff upper bound

N

M 1
11 I (—d3) | (18)

Pe S (
m=1 | L+ =ormn

N —

Proof. See Appendix B.

For a single transmitter antenn&/(= 1), d; is the magnitude of the inner product betweaenand ®,.

10
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For multiple transmitter antennag, . .., dys represent the similarity between the subspaces spanned by
the columns ofp; and®,. The formula (17) is a closed-form expression that can bédathp evaluated for
any special case. See, for example, Appendix B, for the @kphlaluation wherl; = ... = d;s. For given
di,...,dyr, the dependence of the probability of error@andT is only through the produgiT'.

Figure 3 displays the probability of error as a function of BBfor one transmitter and one receiver
antennay = N = 1) andT = 5 for d; = d = 0.0, 0.4, and 0.8. Note that reducimigoelow 0.4 gains at
most 1 dB in equivalent SNR. Figure 4 shows the probabilitgrobr as a function of and SNR=0, 10, and
20 dB. Here we can see more clearly that reducirmglow approximately).4 does not reduce the error by
much. Figure 5 illustrates the probability of error for twarismitter antennas\{ = 2), with d; = ds = d.
Comparing this figure with Figure 3 reveals that for SNR'sagee than 5 dB, two transmitter antennas can
have significantly lower error probability than one with tseeme total transmitted power. This is seen more
explicitly in Section 6. Figure 6 superimposes the= 0 andd = 0.8 curves from Figures 3 and 5 for
relatively low SNR. Observe that below approximately -2 @Bploying a second antenna with unitary
space-time modulation actually increases the probahifigrror. This is not inconsistent with Theorems 3
and 4, which say that unitary space-time modulation is agitiior high SNR or largel’. We conclude that
when employing unitary space time modulation for given galofp, T', and N, there is an optimal number

of transmitter antenna&! that may be considerably smaller th&n

5.2 Channel known to receiver

We have justified unitary space time modulati®r= /7'® on information-theoretic grounds for receivers
that do not know the channel, when eitfi&r>> M or p is large. Surprisingly, we can also justify this
modulation wher¥” > M and when the receiver knows the channel. When the receiwvkithe channel,
capacity is achieved by asimatrix composed of independefiv (0, 1) random variables. In Section 3 it is
argued thaS = /T'® (with ® isotropically distributed) approaches, in distributiamatrix of independent
CN(0,1) random variables @& — oo. Hence, forT sufficiently large, unitary space-time modulation is
nearly optimal, even when the channel is known. Knowledgld ofiowever, mandates different criteria for
designing a signal constellation.

When H is known to the receiver (although still random),

p(X | 8. H) =~ exp (i {(X — Vo/MSH)(X — /p/MSH)'}).

11
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and maximum likelihood decoding is

b = arg min —\pT/MOH)(X —\/pT/M <I>pH

CPZG{CI)h---’(I)L}

As shown in the next theorem, the two-signal probability obedepends on the singular values of the

T x M difference®, — ®,.

Theorem 6 (Two-signal error probability: H known) Suppose that two unitary space-time modulation sig-
nals ®; and ®, are transmitted with equal probability, and decoded withMh receiver that knows{

perfectly. Then the probability of error, averaged ovéyis

1 = 1 N
P, = Resy—jq, { ————— , 19
P 2Ry o 1 [(pT/M)(S?n(w? T am} 19
‘ Sm >0
where2 > §; > ... > oy > 0 are the singular values eb; — &4, and
def |1 1
@m =3 T ooz
Furthermore P, decreases as any, increases, and has Chernoff upper bound
N
re T[] -
e > 5 T .
2 m=1 1 + f_]\/[dzn

Proof: See Appendix C.

We note that wherH is known andS; and Sy are arbitrary (i.e., do not necessarily have the unitary
space-time structure) the derivation of exact probabitiftyerror in Appendix C still applies with minor
changes. The probability of error and Chernoff bound foiitealy S; and .S, are still given by (19) and
(20), but withdy, ..., 0y replaced by the singular values @8, — S;)/VT. See [18] for an alternative
derivation of the Chernoff bound.

In general, there is no direct relationship between the knéivsingular valuessy, ..., dy, and the

unknown# singular valuesiy,...,dy;. WhenM = 1, for example, we havd;, = \<I>J5<I>1| andé; =

@y — B4 = \/2 — 2Re (®1®,), so for a given value of;, 4, can have the range of valugé2(1 — d,) <
0 < V2(1 + dy).
For the special casé = ... = d); = 0 (the two signals are orthogonal), thén= ... = 6 = V2,

12
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and a direct comparison of (17) and (19) is meaningful. FOhI8NR, the Chernoff bounds féf unknown
(18) andH known (20) are then

1 4 MN 1 9 MN
P, < 3 (,o_T> (unknown), P, < 3 <p_T> (known),
which suggests that the probability of error is a factor girapimately2 "V lower when the receiver knows
H than when it does not. Figure 7 shows the exact probabiligrafr as a function of SNR when the two
signals are orthogonal, for known and unknown andM = N = 1, andT = 5. For moderately high
SNR’s the knowledge off yields a 3 dB gain, as expected.

We have seen that whdih is known to the receiver, unitary space time modulation ihbe option for
T > M. However, the maximum likelihood receivers for knowhversus unknowrH are considerably
different, and so are the dependencies of probability afreon the signals. In the former we seek to
maximize the singular values df, — &, whereas in the latter we seek to minimize the singular &lue
of <I>$<I>1; these criteria are not compatible. Moreover, signal alatons for knownH generally have
to be larger than those for unknowth, reflecting the significantly higher channel capacity angldoerror
probability. WhenH is known, signals are distinguishable that would othentigendistinguishable if{
were unknown, including antipodal paitsS, as well as signals whose columns are permuted with respect

to one another. The remainder of the paper considers onlgawk H .

6 Design of Unitary Space-Time Modulation Constellations

We wish to design a constellation éfsignals{S, = v1'®,, ¢ =1,---,L}, Whereéz@g = . Since we
assume no channel coding, the size of the constellatidn 4s 2/, whereR is the data rate in bits per
channel use. To minimize pairwise probability of error, amauld like the singular values of the products
@}2@)@1, ¢1 # /5 to be as small as possible. Unfortunately, we do not know obg t@ minimize these
singular values, nor can we visualize the properties of algignal constellation. In constructing a constel-
lation, we note that the pairwise probability of error isamant to certain unitary transformations, including
left-multiplication by a commofi’ x T" unitary matrix,®, — U'®,, ¢ =1, .-, L, and right-multiplication
by arbitrary M x M unitary matrices®, — ®,0,, ¢/ = 1,---, L. Constellations that are related in this way

are equally good.
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6.1 Bound ond; for one transmitter antenna

With a single transmitter antenna/( = 1), the task is to find. unit vectors the magnitudes of whose inner
products(di);, 1,, ¢1 # ¢» are as small as possible. As shown in the previous sectiere iB no direct
relation between the magnitude of the inner product betwaencomplex vectors and their Euclidean
distance. There is a large body of literature on choosingectibns of unit vectors that maximize their
pairwise Euclidean distances (see [3] and the many refesatierein). However, the literature on choosing
vectors that minimize their pairwise correlations appdarde smaller [10], [12], [22]. Moreover, the
constellation design problem iA-dimensional complex space does not reduce to a designepnabl27'-
dimensional real space, becauke= |<I>;<I>1| does not equal the magnitude of the inner product between
the real27-dimensional vectorfRe (®1)” Im (®1)7] and[Re (®3)7 Im (®3)7].

For given values ofl” and L, it is not known how small we can mak&,.. = max;, 4, (d1);, 1,, the

largest pairwise correlation between the signals. Howehkerfollowing bound is available [10], [12]:

1—d? T(T+1)---(T+E
L < hax T+ (T4 k) 21)
E+1— (T + k)dmpax k!

wherek = 0,1,... is a free parameter. Solving this relation, for examplehwit= 5 and L = 32 (which
gives 32 signals in 5 time samples,Br= 1 bit/channel use), yieldg,,.x > 0.46. Hence, we would like to
choose 32 complex 5-dimensional unit vectors, constigutinr constellation, for which,,,., is as close to

0.46 as possible. It is not known how tight the bound (21) is.

6.2 Algorithms for reducing d,.x

Starting with any constellation of unit vector signals faiagle transmitter antenn/ = 1, we describe a

simple iterative algorithm for reducing,ax:

1. Computel,,,x, the maximum of the magnitudes of &l{ L — 1) /2 distinct inner products, and choose

a pair of vectors whose inner productds ax.

2. "Separate” the pair by moving each vector a small amouopposite directions along the difference

vector between the pair.
3. Renormalize the pair, if needed.

4. Repeat Steps 1-3 unti},., stops decreasing.
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Using this technique wit" = 5 and . = 32 (one bit per channel use) on a constellation of initially
randomly generated unit vectors, we were able to achigyg = 0.515. We see that we are not very far
from the boundi,,.,x > 0.46. Figure 8 illustrates the correlations between the membfdise constellation,
Py, ..., D3y

This same algorithm may be generalized to multiple trarteméntennad/ > 1 by identifying the pair
of signals whose product yields the singular values thatgea the worst (largest) Chernoff bound on error
probability according to (18). “Separating” the signals te aided by left-multiplying by unitary matrices,
since this operation preserves the orthogonality of tharook in each signal. We omit the details. Figure
9 displays the bit error performance of constellations ofamg space-time modulated signals generated for
M = 1andM = 2 transmitter antennas, each with= 1 bit/channel use an@ = 5. We see that the bit
error probability decreases approximatelyldg? for high SNR with two antennas, versus approximately
as1/p with one antenna. No attempt was made to assign the dateohite tunitary space-time signals

optimally.

6.3 Adaptation to continuous fading

In certain TDMA, frequency hopping, or interleaving applions, the fading is approximately constant
within aT-symbol block and is independent across blocks. However,rimobile environment the fading
may change gradually without piecewise jumps. If the fagiragess changes little within a symbol interval,
one way to model the sampled received signal is to assigntaca@uelation function to the fading coeffi-
cients. One common autocorrelation function is Jakespgsed in [9]. It is usually possible to select some
value forT such that the fading is approximately constant dZesymbols; in doing so, however, adjacent
blocks of T' symbols may be correlated as in Figure 10. Interleavingksa@t 7' symbols could remove this
residual correlation. Instead, we describe a strategyekpibits the residual correlation betwe&rsymbol
blocks with a “seamless” modification to unitary space-timedulation.

Seamless unitary space-time modulation constrains akiltrges in the first and the last rows &f to
have magnitude /VT, i.e.|[®]1m| = |[®rm| = 1/VT, m = 1,---, M. Suppose now that the signa
is to be transmitted immediately after the sigdal Recall that we can right-multiply; by any M x M
unitary matrix without affecting its statistical prop&si at the receiver. Consequently, we can multiply
by the M x M diagonal unitary matrixo that makes the first row ob;© equal the last row ofb;, i.e.
[®;0]1m = [®i]rm, m = 1,---, M. Then, instead of transmitting &ll rows of ®;, it is only necessary

to transmit the las” — 1 rows of ;0. Hence, each signal (except the very first) can be tranginiite
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T — 1 time samples rather thdfi, but the receiver can still exploit tHE-symbol coherence interval to
demodulate each signal; see [11] for single-antenna codbshis feature. It follows that the size of the
signal constellation can be reduced fram= 277 to . = 2%(I'-1) For example, withR = 1 half the
number of signals are needed.

It is worth noting that forT' = 2 and M = 1 (fading approximately constant in blocks of two symbols,
and one transmitter antenna), this form of seamless ursfaage-time modulation is equivalent to conven-
tional differential phase-shift modulation. To see thigppose we wish to transmit one bit per channel use,
R = 1. Then, using seamless unitary space-time modulation, we aely L = 2%(T"—1) = 2 signals in our
constellation, each of which is2ax 1 vector whose first and last entries have magnitutg?2. Since only

two signals are required, making them orthogonal minimizes: |<I>;‘<I>2

1/v2 1/v2
¢ = ) ¢y =
I I e

Let binary message 0 be representeddqy and 1 by®,. Suppose we want to transmit a binary 0 across
the channel after having previously sent a 1 representebhbyfhen we would multiply®; by -1 so that its
first entry matched the last entry of the previously sépnt We then transmit only the second entry of the
modified ®, which is now—1/v/2. Let X1,..., X3 denote the three received symbols corresponding to
the two transmitted data bits. The receiver then useand X, to decode the first message bit, akig and

X3 to decode the second. This modulation-demodulation psosesxactly differential binary phase-shift
keying (D-BPSK).

We now assume that the fading is correlated according toesJalodel [9], with autocorrelation func-
tion Jy (27 f4t) where Jy(-) is the zeroth-order Bessel function of the first kind afydis the maximum
nondimensional Doppler frequency in cycles/sample perithie fading processes shown in Figure 10 are
generated according to this model. For = 0.01 the first zero of the Bessel function is approximately
t = 38. On the other hand, fading coefficients five time samplestdyze correlation 0.976. Because of
this high correlation, we may safely choose to design oustadlation for anyl” < 6.

We now look at the performance of seamless unitary space-tiradulation to transmit one bit per
channel useR = 1) across this continuously fading channel. Figure 11 shdwesbit error rate for one
(M = 1) and two (M = 2) transmitter antennas, and one receiver antenna. To dertaia figure, signal
constellations of size” ~! were designed fof’ = 2, ..., 6 according to the above principles. The receiver

always decoded using maximum likelihood as if the fadingenewnstant fofl' symbols. As explained
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above,M = 1 andT = 2 corresponds exactly to D-BPSK, which is shown by the dashedWith M =1
andT = 3, .... 6, the performance varies little withi, and is well approximated by the dashed line. On the
other hand, with\f = 2 (two transmitter antennas), the solid lines show that tlilopmance varies greatly
with T'. As noted in Section 3, wheid = T, unitary space time modulation is ineffective, and thus the
error probability is 0.5 fofl’ = 2. ForT = 3, 4, and 5, the probability of error decreases monotonicadhy
quickly asT increases. FoF' = 5 and two transmitter antennas, the probability of error igdpthan for
one transmitter antenna for all SNR’s greater than 8 dB. $&Esmunitary space-time modulation therefore
realizes the diversity advantage of the second transnatiegnna for all reasonably high This behavior

is consistent with our information-theoretic justificatiof unitary space-time modulation for high SNR in
Section 4. The slightly worse performance at high SNR'6f 6, compared withl" = 5, is possibly due to
greater variation of the fading coefficients over six timmgées than over five. Further experiments indicate

that because the fading is so fast, increagigeyondT” = 6 degrades the performance even more.

7 Extensions of Theory to Continuous Fading

In the previous section, we successfully modified unitargiceptime modulation to work over a fading
channel with a Jakes’ autocorrelation, even though thermseh&as originally motivated by a piecewise
constant fading model. In this section, we draw some theatatonclusions about the optimal signals for
fading channels, where, within each independBrgymbol block, the fading coefficients have an arbitrary
time correlation. We refer to this time correlation as contius fading. We obtain extensions of Theorems
1 (limiting the number of effective transmitter antennasyl &heorem 2 (structure of signal that achieves
capacity).

Consider the model (1) where, within each blockio$ymbols, the fading coefficients now are indepen-
dent, zero-mean, circularly-symmetric, stationary carpgbaussian random procesggs,,. Thus, within

a block of T symbols, the received signal is

M
Tin = \/p/Mthmnstm—me, t=1,...T, n=1...N. (22)
m=1

The fading processes are independent from’Brsymbol block to another, but within each block they are

17

www.manaraa.com



correlated according to a known autocorrelation funcfi¢)
E{htlmlnlh;szmznz} = 6m1m25n1n2k(t1 - t?)v (23)

wherek(0) = 1. The formula for the conditional probability density (4)llsatpplies but with the modified
covariance matrix

A=TIp+ (p/M)(SST) o K, (24)

where ‘0" denotes the Hadamard (i.e., element by element) matridump andK is theT x T Toeplitz
covariance matrix,K|;; = k(i — j). Note that in the former case of piecewise-constant fadiig,; = 1.

It is realistic to assume that, within a block, the fading imadom process. Less realistic is the inde-
pendence of the blocks, but this happens naturally if werasdihat the blocklengti” is long compared
with the correlation time of the fading process. For them fdfading between differerif’-symbol blocks
is independent, with the possible exception of a small nurobsamples near the boundaries of adjacent
blocks. The block independence is more likely to be satisfiecdDMA systems such as 1S-54/136, where
a user does not have access to contiguous blocks.

Suppose that the fading autocorrelation function vanisk®®ond some lag > 0 that we call the
correlation timeof the fading, i.e.k(¢) = 0 for |[t| = 7,7 + 1, .... The next theorem extends Theorem 1 to

continuous fading.

Theorem 7 (Limit on number of transmitter antennas in continuous ffigdliFor any correlation time- and
any fixed number of receiver antennas, the capacity obtawigddM > min(7,7") transmitter antennas

can also be obtained withd = min(7, T') antennas.

Proof: Suppose tha/ > min(7,T") and capacity is obtained for some joint probability densitythe
elements of thd" x M matrix S. All but the2 min(7,T') — 1 central diagonal bands of the Toeplitz matrix
K are zero; that is{K];; = 0, |i — j| > min(7,7). The Hadamard product in (24) therefore causes the
conditional probability density (4) to depend on only thein(r,T) — 1 central diagonal bands &ST. A
covariance-extension theorem in [5] states that one caayahfind al” x T' Hermitian nonnegative-definite
matrix Q whose rank is less than or equahtan(r,7"), and whos€ min(7,7") — 1 central diagonal bands
are proportional to the corresponding bandsSéf. Thus, we can find & satisfying

Qij [S51];

_ . ) T
i (r. T) Y Vi — j| < min(7,T)
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Since@ has rank at moshin(r, T, it can be factored a = 5, S]T, whereS; isaT x min(7, T) matrix.

Consequently, for any’ x M matrix S, we can find & x min(r, 7") matrix.S; such that

(1S oKk  (SSh) oK
min(r,T) M

(25)

This relation implicitly specifies a joint probability datysfor the elements of; in terms of the joint proba-
bility density for the elements &f. We have the power constraifittr (.S, S{‘)/ min(7,T) = Etr (SST)/M =
T, which has been shown in [8] to achieve the same capacityeasttbnger power constraint (2). Using
min(7,7T) transmitter antennas, we can therefore achieve the sanaeitathat can be achieved with/
antennas. O

Few realistic autocorrelation functions vanish absojuteyond some time lag. For the Jakes model
considered in Section 6.3, the autocorrelation vanishgsatr ~ 38. This limits the number of transmitter
antennas to approximately 38.

We now determine some of the structure of the capacityratigisignal in continuous fading. Because

of Theorem 7, we assume thaf < min(r,7"). We define a random process, . . . , hy to becyclically sta-

tionary if Phy,...hp (hl, ey hT) = Phq,...hp (h]+t mod T+« - ah‘l—l-(TfH—t) mod T) for all t, Wherephh___yhT(-)
is the joint density of, ..., hr. Intuitively, shifts in time ofh4, ..., hr “wrap around” without affecting
their joint distribution, or, equivalently, the periodigtension ofhq, ..., hy is a stationary random process

in the ordinary sense. The next theorem is the continuadisdaversion of Theorem 2. Because the fading
process is assumed to have less structure than in Theorelme 2phclusions are weaker. However, the

conclusion that thé/ transmitted signals should be time-orthogonal remains.

Theorem 8 (Structure of signal that achieves capacity in continu@dirfg) The capacity attaining can
be chosen to have mutually orthogonal columns, and havedeimsity that is unchanged by rearrangements
of its columns. Furthermore, the columns$fcan be made jointly cyclically stationary if the fading is

cyclically stationary.

Proof: The singular value decomposition implies that the capaaityieving signak can always be factored
into three termsS = ®V ¥t whered and ¥ are unitary matrices and is real, nonnegative, and diagonal.
Equations (4) and (24) imply that

p(X [ @V W) = p(X | @V). (26)

Dropping the third factor yields a new signé| = ®V that has the same mutual information $sand
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whoseM columns are mutually orthogonal.

We now assume that the capacity-achievihas mutually orthogonal columns. There afé ways of
rearranging the columns &, each corresponding to post-multiplyifjby a M x M permutation matrix
Py, £ =1,..., M!. EachS P, yields the same mutual information &s Forming an equally-weighted
mixture density for the transmitted signal involving all! arrangements of its columns vyields a signal
whose probability density is unchanged by rearrangingdbsrans. The concavity of mutual information as
a functional of the input density and Jensen’s inequaliyetber imply that the mutual information for this
mixture is at least as great as that for

Let the fading be cyclically stationary. The transmittednsil may be cyclically shifted in time by

pre-multiplying S by theT' x T' permutation matrixPr, satisfying
[PTES]tm = S[14(t—1—£) mod T]m> t= 17---7T7 m = 17---7M- (27)

Forming an equally-weighted mixture density for the traitad signal involving alll” cyclic delays yields

a density for the transmitted signal that is jointly cycligatationary. In other words, the periodic extension
in time of S is a multivariate {/-component) strict sense stationary random process. Weargwe that the
cyclic shift does not change the mutual information. Rettadlmodel (22); we apply a cyclic shift in time

of +/to S, and—/ to X, to obtain

M
L4+(t—14+) mod Tln = V p/M Z h[H—(tfl—M) mod T]mnStm + W[14(t—14£) mod T]n>
m=1

t=1,...T, n=1...N.

The cyclic delay does not change the probability densitj#obecause it is white, and it does not change
the probability density of the fading because it is cyclicatationary. Consequently, the cyclic delay of the
transmitted signal does not change the mutual informatetwéen it and the received signal, so Jensen’s
inequality implies that the mutual information for the mirt density is at least as great as that for the
original signal. O

We make some final observations. First, in the above proof sgerae that the fading is cyclically
stationary. This is not restrictive since any wide-senséisgiary fading process asymptotically becomes
cyclically stationary ag” — oc [21]. Second, the role of the block lengihis secondary to that of the

coherence time. We impose the constraint that blocksBfsymbols be independent because it allows
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us to use the standard notions of mutual information andrelacapacity per block-of?-symbols. When
T > 7, the capacity per channel use becomes independerit afid channel coding could be performed
over the many independent fades that occur in a sifigi#ock.

At present we are unable to say anything more about the destenature of the mutually orthogonal
cyclically stationary signals that attain capacity. Hoeewsing what by now are familiar arguments, we
can infer the structure for the limiting cage > 7 > M. One could send training symbols and estimate
the fading coefficients and still have time to send data leefioe coefficients change. The capacity would
approach the perfect knowledge capacity, the optimum Egmauld be approximately white Gaussian, so

unitary space-time modulation would be approximately rogti

8 Conclusions

Multiple element antenna arrays operating in Rayleigh fairfg can potentially sustain enormous data
rates with moderate power in a narrow bandwidth. Our apgrdacdhis problem began with the premise
that nobody knows the propagation coefficients and that vadadle transmission time should be spent
sending message signals rather than training signals.rmiafion-theoretic considerations then led us to
unitary space-time modulation. Preliminary results iatlicthat this modulation can be highly effective,
even though the receiver never explicitly learns the pragiag coefficients.

We have derived performance criteria for unitary spacestimodulation and indicated the properties
that a signal constellation with low block probability ofrer should have. Our particular constellation
designs were ad hoc, however, and the problem of how to desigstellations systematically that have low
probability of error and low demodulation complexity remsiopen. We have also not considered how to
code across more than one block fading interval. Solutiorikese problems are especially urgent for large
T and high data rates.

Acknowledgments.The authors thank H. Landau, J. Mazo, J. Salz, R. Urbankethenidite A. Wyner for

helpful suggestions.

A Appendix: Asymptotic behavior of C' asp — ~

ForM = N = 1, we show that the mutual information generated by a gixen) can be no more tha#(1)

larger than (11), the mutual information generategby;) = 6(v; — V/T'), asp — oo.
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We start by lettingp(vi) = pad(vi — VaT) + pyd(vi — VbT) be composed of two masses, where
a = a(p) andb = b(p) are positive functions op that do not go to zero gs — oo, but are otherwise
arbitrary. Sincelv? = T, it must hold thatip, + bp, = 1, and we assume that = p,(p) andp, = py(p)
are also functions gb. We allowa but notb to go to infinity asp — oc. (Allowing both would violate
the power constraint.) It is then a simple matter to parahelderivation ofC; in (11) to obtain the mutual

information

I=(loge) - Tpaln(1+paT)pbln(1+pr)lnF(T)/UOO g(N) ln(q()\)//\Tl)d)\], (A.1)

where

-A/(1 T T\ —A/(14+pbT bT' )\
e~ (1+pa >7(Tf1, 1’fpw) e—M(1+p »,(Tfl,]iw)

q(A) = pa

paT =1 pbT =
DT~ 1)(1 + paT) |22 ] DT 1)(1+ pbT) | 1227

We look first at the first term iff,® ¢(A) In X dA, which is

- e*/\/(1+paT),y(T _ 1, pal )
/ A pa ) I (A.2)
0 DT~ 1)(1 + paT) |25 ]

We break the integration into three disjoint rangés;1/p°], (1/p%, p°], and(p°, o) for some arbitrary

0 <e<1.Whenx € [0,1/p], 2222 — 0 asp — oo, and the expansion

' 14paT
T-1
YT —1,2) = ;71 + 021, z—=0 (A.3)
and inequalitye—*/(1+,aT) < 1 therefore yield
1/ef TA 1
—A/(1+paT) o pa _ np
/0 de fy(T 1, 1+paT>ln)\ o(pTE). (A.4)
Sincey(T — 1, £527) < T(T — 1) for all A,
p° T p°
/ dx e M OtoaD)op g _PATA / d\ In\ = 0(p6 1np). (A.5)
J1/pe 14 paT J1/p
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When) € (p°, 00), 222 5 50 asp — oo, and the expansion

' 1+pal
YT —1,2) =T(T —1) — 2" 2e (1 + o(1)), z — 00 (A.6)
gives
/oo d)\e*’\/(Hp“T)'y(T— p, PaTA )ln)\
e 1+ paT

oo T)\ r—2 _ paTX
- M (el (1 Ny (T = 1) — | 22 et (1 4 o(1
/pg dre () [P = 1) Trar) ¢ o)

= /OO dX e M HPaT) (In ) D(T — 1) — O(e™*")]
o

o0

= (14 paT)D(T — 1)[1 — O(e *")] . dhe * In[\(1 + paT)]
Inap
= (1+ paT)D(T — 1) [[ln(l + paT) — 7y + o(aplg)] , (A.7)

wherey = 0.5772... is Euler’s constant. Joining (A.2), (A.4), (A.5), and (A.@nd repeating the calcula-

tions for the term involvingy, andb, we get

/oo dA g(A) In AT = (T — 1)[pa In(1 + paT) + py In(1 + pbT) — 4] + 0(;"’5), (A.8)
0

where0 < e < 1 is arbitrary.
We now look atf,* ¢(A) Ing(X) dA. The first term is

00 e*/\/(lﬂmT),y(T —1, llfz;/\T>
d pg T
0 I‘(T—l)(l—l—paT)[ pa ]

14+paT
~\/(14pal TA —\/(14-pbT bTA
e~ (1+pa )7(T_1, ﬁ‘paT) oM (1+p )V(T—l’ﬁw)

‘In | pqg (A.9)

T—1 r=1
(T - 1)(1 + paT) [%} (T = 1)(1 + pbT) [—ﬁ%]

We break the integration into the same three disjoint rargesefore. Fon € [0,1/p°], equation (A.3)

yields

A
—A/(1+paT) _ _
e 1 0(1 n paT) (A.10)
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)\Tfl

AT -1, 11"5;) = (o). (A.11)

If « = a(p) does not go to infinity, then neither term in the argument efltgarithm in (A.9) dominates
the sum. Ifa(p) goes to infinity, the second term dominates the sum and ttaitbg in (A.9) behaves as
In(pp ATV /[(T — 1)T(T — 1)pbT]) = (T — 1)In X — In(T'(T + 1)pb) for large p. In either case we may

then mimic the analysis of equation (A.2) to conclude that

/Ul/ps d g(A) Ing(X) = o(pl?fa). (A.12)

For\ € (1/p°, p°], the expansion (A.10) again applies, and equation (A.1p)igs that

1 pal' X
— < -1, )< —1).
(1+0(1)) T T S 7<T L2 paT) <I(T—-1)
Thus, the logarithm in (A.9) i§)(In p), and
P Inp
/ d\ g(\) Ing() = 0( H). (A.13)
1/p® p

Finally, for A € (p°, 00), we change the variable of integrationxb= \/(pT), X' € (1/(Tp' ¢), c). It
follows from (A.6) that

ef)\/(1+paT) _ ef)\’pT/(1+paT) :ef(1+0(1/p)))\’/a
T A 2aT? N
W(T-1, 250 = (-1,
1+ paT 1+ paT
2 241 2 241
peal* X'\ _plaT?)
:I‘Tflf( ) Tt (14 o(1
1)~ (Fg)e T (o)

= I(T 1) - O(e ¥).

Hence,

1 [pa , ~ ,
g(\) = q(pTN) = pik [%e (1+0(1/p))X [a p_bbe (1+0(1/p))A /b] (1 4 0(1)>’

and
/ dX g(A\) Ing(A) = / dX pTq(pTN') Ing(pTN)
Jo Sy
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= —lin—i—/U dX (I;a “Ma 4 I;be#‘/b) ln(%eﬂ\/“—i—%eﬂ\/b)

+o(1). (A.14)
Combining (A.12)—(A.14), we get

/ drg(\) Ing(X) = 1n(pT)+/ d,\(@e*A/“+%e*A/”) 1n(@e*A/“+%e*A/”)+o(1), (A.15)
0 0

a a

and combining this equation with (A.8) gives

I = (loge)- [ln(pT) + (T — 2)[pe In(1 + paT) + ppIn(1 + pbT)] =T — InT(T') — (T — 1)y

/0 dx (Beere g Bhemarr) 1n(@eV“+%eA/”): +0(1)

= (loge) - [(T — 1)[In(pT) — ] + (T — 2)[pa Ina + pyInb] — T — InT(T)

_ Pa —xja o Pb —\/b Pa_ xa , Pb_xp))
/0 d,\( + e )1n( e Ve B ) +o(1). (A.16)

a a

We have thap, + py, = ap, + bpy, = 1. Therefore, by Jensen’s theorem,
palna+ pylnd < lIn(ap, + bpy) =0, (A.17)

with equality if and only ife = b = 1. Furthermore, as shown in [4], for any densit{\) supported on
A > 0 and satisfying[;* dA A p(A) = 1,

- [T asmpoy <1
0

with equality if and only ifp()\) = e~*. Hence

_/U d\ (pa “Aa 4 pbbef)\/b) ln(p_ae—)\/a + @ef)\/b) <1 (A.18)

a a b

with equality if and only ifa = b = 1. Thus, forT > 1 and asp — oo, I is maximized by choosing

a = b = 1 with probability one, which collapses the two distinct mesito one at;, = 1. When
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a =0b=1,thenl = Cj, and from (A.16) we therefore have the expansion

o = (loge)[(T—l)[ln(pT)—fy]—T—lnF(T)—l—l +o(1)

= log[(e'?yfl)T] F(]LTJ +o(1).

SinceC, /T = (loge)e'/? Ey(1/p) = log(p/e?) + O(1/p), we may also write

0Tty (D)L T et

(A.19)

(A.20)

(A.21)

In our argument for showing that any density with two distintasses asymptotically generates less

mutual information than a single mass+df’, we have explicitly prevented one of the two masses from

being located at; = 0. We now show that a mass at = 0 must have probability that tends to zero as

p — oo. As before, we assume that there are two masses, with ene=at/aT" with probability p,, but we

place the other at; = 0 with probability p,. The mutual informatior is then as in (A.1), but witlh = 0,

and
e M kel (11, ) LT
Py (T

q(A) = pa

o 111
DT = 1)(1+ paT) | 22,

We analyzel as in the previous manner, and begin wmﬁc g(A\) In XT—1d\. Its first term is the same as

(A.2), yielding
o0 ed/(upam(T 1, ITZ;AT)
/ d)\ pq i In AT = (T = 1)py[In(paT) — 7] + o(1) (A.22)
Jo U R@ )+ par) [ ]

(Compare (A.8).) The second term is

00 e~ M\T-1 I'(T)
AApp—— In A = (T =1 : A.23
/0 P Ty ™ ( )P T(T) (A.23)
The integral [, ¢(A) Ing(A) dX is now analyzed. The first term is
- ef)\/(1+paT),y<T 1, ]TZ“IAT) e*/\/(1+paT),),(T —1, ]TZ;/\T> e A\T-1
/ dA p(l T T—1 ln pa T T—1 +pb F(T)
Jo T(T —1)(1 + paT) Hﬁ} I(T —1)(1 + paT) H‘ZGT}
(A.24)
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We note that the density

_ A
e A/(l—!—paT),_),(T —1, ﬁ;ﬁ)

o 17
DT = 1)(1+ paT) | 22 ]

has a maximum value of approximately(paT’), and is effectively supported fox in an interval that
increases linearly with, beyond which it decays exponentially. On the other hareldédmsity

e*/\)\Tfl

I(T)

has its maximum value~ ("= (T — 1)~ /I(T) at A = T — 1, and decays exponentially asncreases,
independently op. By breaking the integration in (A.24) into the three usuajant ranges (and omitting

the tedious details), we conclude that (A.24) approaches

/0 dX pg T n|pg I
. T(T — 1)(1 + paT) [HWT} D(T — 1)(1 + paT) [HpaT}
= pa[—In(paT) — 1 +1Inpy] + o(1) (A.25)

asp — oo.

The second term iff; g(A) Ing(X) dX is

/oo e M\T—1 e~ M (1+pal),, (T -1, IT;AT) e AT
0

d\ pp———1 @
o T(T) n(p + T(T)

a7
DT = 1)(1+ paT) | 224

and the same arguments show that this approachgs{asc)

o0 e AT e M\T-1
/0 dX py F(>\T) In [pb F(/\T) ] =pp[-T+ (T — 1)I'(T)/T(T) — InT(T) + lnpy].  (A.26)

Combining equation (A.1) with (A.22)—(A.26), we deducettha
I =(loge) [pa(T — D[In(paT) — 7] + pa|-T — InT(T) + 1] — pa Inp, — pplnpy] + o(1).

This expression is clearly maximized by lettipg(p) — 1 asp — oc. Hence, any mass at = 0 in the
capacity-achieving distribution must have probabilitgttdecays to zero gs— oo.

We have been focusing am(v;) with two distinct masses, and now outline how to generaliee t
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above arguments to show that apfe,) asymptotically generates less mutual information than ) =

§(v; — V/T). First note that the expansion (A.16) can be immediatelyegrized ton masseg(v;) =

2?21 pjdé(v1 — +/a;T), to obtain
I = (oge) |1~ Dflog(o?) 1)+ (I~ 2) D py e~ 7 - Wr()
j=1

— /OC d\ (En: &e/\/“f) ln(zn: ’ﬁek/“fﬂ + o(1). (A.27)
0 a,j (J,j

Provided thatuq, ..., a, are taken from some finite positive interval, the asymptetipansion (A.27) is
uniform, and hence remains valid even if we febecome unbounded (say, as a functiorppfAs p —

oo, the mutual information in (A.27) is therefore maximized lgvingay,...,a, — 1, which reduces
the multiple masses to a single maswat= /7. On a finite interval, we can uniformly approximate
any continuous density with masses, and becduiseconcave irnp(v;) (see [8]), we can approximate
arbitrarily closely as well (we are here overlooking manghteical details about optimizing in an infinite-
dimensional space). The preceding argument therefoeeuglihat we are asymptotically better off replacing

the continuous density on this finite interval with a mass,at VT.

B Appendix: Two-Signal P, for H Unknown—Exact and Chernoff Upper

Bound

From (15), the probability of error whed; is transmitted is
def , (_PT/M (P! i
Pe“ =P (mtr {X (@2@2 — él@l)X} >0 | @1 s (Bl)

where the multiplicative factofpT' /M) /(1 + pT /M) is included to simplify the algebraic manipulations in

this section. Using the singular value decomposition,

old, = DT, (B.2)
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where® andY are M x M unitary matrices, and = diag(d,, ..., dys) is diagonal, real, and nonnegative,
we rewrite (B.1) as
_ pT/M i ! o
Pe“ = P (mtr {X (@2@@ @2 - <I)1TT @I)X} >0 | @1
- P (tr{Y;YQ —v/viy>o0] <I>1) , (B.3)

where

[Y1 ] :Y:< pT /M )1/2 [ Tio! ] Y

[ ] tot/it) | eiaf |
The N columns of X are independent, identically distributed zero-mean cem@@aussian vectors with
covariance matri>IT+(pT/M)<I>1<I>J{. Consequently th&’ columns ofY” are also independent; any column

yn has2M x 2M covariance matrix

[ (/M) 1 (er/mp ]

| (pr/M)D Ly + (pr/M)D?) |

E{ynyl | ®1} = (B.4)

Note that this covariance matrix depends ®n and ®, only through the singular value matrik. We
conclude that’,; depends only o). If we were to interchang®; and®,, D would be unchanged, and
thusP. = Py = Pepa.

From (B.2), we have thad = (®,0)(®,T). The matrice®,0 and®, Y each comprisé/ orthogonal
unit vectors, implying that every, . . ., das is equal to an inner product between unit vectors. Conseiyyen

0<d, < 1.

B.1 ExactPF,

We obtain a closed-form expression for the probability abeby inverting the characteristic function of
tr {¥, Y5 —¥;'v1}. The use of the characteristic function for this type of akdtion is well-known [14, 16].

Equation (B.3) may be written as

N M
P.=P (Z > (ymerinl® = [ymal®) > 0] @) : (B.5)

n=1m=1
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The structure in equation (B.4) implies thetcomprisesM N statistically independent pairs of correlated

random variables{ (ym.n Ym+mn), m=1,...,M, n=1,..., N}, with covariance
Ym,n . . _ pT /M (pT/M)d,y,
E ym’n ym—|—M,n :| ¢1 - pT /M 2
Ym+M,n (pT/M)dm gz [l + (pT/M)dy,]

whered,, is the mth diagonal entry ofD, and this covariance does not dependronThe characteristic

function for each independent term in (B.5) is therefore

E (exp{—iw( )} @)
— det ! IH@{ pT/M (pT/M)dy, ] {—1 0]
L(pT/M)dm %[H@T/M)d;” L 0 1J
__ 1+pT/M [ 2 . L+pT/M }1
T ermEa—a) |0 T Mz - &)

B 1+ pT/M
~ (pT/M)2(1 — dE)[(w —i/2)? + a3 ]

(B.6)

whend,,, < 1, where

def |1 1+ pT/M
Gy = -+ 5 o
4 (pT/M)*(1 —dz,)
Whend,,, = 1, the characteristic function is identically one for all
The region of convergence of the expectation in (B.éj) isapy < Im(w) < % + an,. The characteristic
function of tr {YQTY2 — YITYI} is the product of thel/ terms (B.6) raised to th&/th power. We invert the
characteristic function, artfully choosing a particulateigration contour within its region of convergence to

obtain the error probability as

oo+i/2 M
P, = / dz/ dw exp (iwz) - H E (exp{féw(l — \fqm,n|2)} \ (I’l) (B.7)
oo+i/2 me1
1 oo+z/2d 1 ﬁ [ 1+ pT/M N
= 5= o — .
2t ) iy W |G B (@ — /27 ¥ a2
dm <1

The exponential decay of the inner integral in (B.7)zas» oo for Im (w) = 1/2 justifies the above
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interchange of integration. With a change of variables, biaio

M N
1 [ 1 1+ pT' /M
Pez—_/ do——:o ] [ > 2/ — . (B.8)
21 ) oo wHi/2 1L | (pT/M)?(1 — dZ,)(w? + a},)
dm <1

where the integration is now along the real axis. We closectirdour of integration from the positive
real axis to the negative real axis with a semicircle swegpie entire upper-half complex plane in a
counterclockwise direction. Since each term in the produthe integrand decays for large| as1/|w|?",

the semicircle itself does not contribute to the total indkdput encloses all the integrand’s upper-half plane

polesiay, ..., taps. The integral may therefore be evaluated by Cauchy’s tmepre

1 & 14 pT/M

Pp: SSw=1a; T
=2 Ry o 1 [<pT/M)2(1d,a><w2+a,a>

dm <1

(B.9)

This is equation (17).
We evaluate this expression for the special case of equglilsinvaluesi; = ... = dy =d < 1. In

this case, we must evaluate the residue of an akdéf pole,

P 1+pr/M MY dMN-1 1
o [(pT/M)Q(l—dQ)] ['(MN) [deN] (w+i/2)(w +1a)MN ],

The following easily verified identity,

i . S D(MN +k — )Tk +1) e B
dwk (w+1/2)(w + ia)MN :(_1)k2 T(MN)T(k+1—7) (w+1/2) "0 (4 iq) T (MN+E=I)

j=0

fork = M N — 1 gives

p_ [ 1+ pT/M }MN
© L@+ pT/M)? — (pdT/M)?

1+7

MY T2MN —1— )
> T(MN)[(MN — j)

2/(2 + pT/M)? — (pdT/M)?
(oT/M)(1 — d2)\/2 1 /2 + pT/M)E — (pdT]M)?
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B.2 Chernoff upper bound and monotonicity

We evaluate the Chernoff upper bound in an unconventionatdmncise way. Sincé’, is real-valued, we

take the real part of (B.8) to obtain

0o M N
P, = i/ o I1 L+ oM ,
dr ) e ija L Granz— 2w+ a2)
dm <1
M N
1 [ 1 1
= — dw 11 S (B.10)
2 T/M2(1—d2 ) (w2 +1/4
dr | o W+ 1/4 L _1+(" / >1(+pm>4( />]
v r N
1 /°° 1 1
< — dw H
= 2 /M) (1—d2,
4 ) o w1/ S _1+_(p4(/1‘+>pT(/M> )]
v N
1 1
T2 L (pT/MV(ld?n)] ’ (8.11)
m=1 | L + a7

which is (18). It turns out that (B.11) is, in fact, exacthet€hernoff bound obtained by computing (see,
e.g. [21])

where

p(A) =InE {exp [A (Inp(X | ®9) —Inp(X | &1))] | D1},

and wherd) < X < 1is a free parameter that is chosen to minimiZé). To help see this, we note that\)
is merely the logarithm of the previously computed chanaggtie function forw = A, and is minimized at
A = 1/2. The exact expression fdt, is derived in (B.8) by integrating the characteristic fuastalong the
line Im (w) = 1/2. This process “tilts” the likelihood ratio by just the rightnount needed to obtain (B.11)
as the Chernoff bound.

Finally, to see that decreasing atly, decreases the total error probability, observe that, fgraanhe

integrand in (B.10) decreasesds decreases.
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C Appendix: Two-Signal P, for H Known—Exact and Chernoff Upper

Bound

We follow the same strategy as in Appendix B, and therefotwrealiate the discussion. WitH known,

albeit random, the average error probability, given thais transmitted, is

T
Py = P (tr {[X - (pT/M)1/2(I’2H} [X - (pT/M)1/2(I’2H}
T
- [X - (,oT/M)l/?cb]H} [X - (,oT/M)l/?cb]H} } >0| <1>1>
T
= P (tr { [(,;T/M)l/?(% —®)H + W} [(,oT/M)V?(cbg —®)H + W} + WWT} > 0) .
We use the singular value decompositidn, — ®; = ZAQT, whereA is diagonal, real, and nonnegative,

and= and() are unitary matrices. Becauge andQf H have the same distribution, afd and=W have

the same distribution, we have that
T
P, =P (tr { [(pT/M)WAH + W} [(pT/M)V?AH + W} + WWT} > 0) . (1)

The probability of error only depends on the singular valuesl hence’. = P,;; = P,,. The singular
value decomposition implies that = Z1®,Q — 21®,Q, or 6, = [Ef Q] — [ET®19Q],m, Where the

columns of each of the bracketed matrices are orthonormalectors. Consequently < §,, < 2.

C.1 ExactP,

As in Appendix B, we take the characteristic function of thg-likelihood ratio (the expectation being with

respect toH as well adl’), and we obtain the probability of error as the integral

. 1 oo+7:/2d 1 M 1 N
O 2mi g wingl[H(w?éw)(pT/M)%]
1 °°+i/2d 1 M 1 N
T ) iy w g [(pT/M)%[(wi/?)“ra%J
Sm >0
M N
1 [ 1 1
= | dw— C.2
i) o 1 ] €2
S >0
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M N

ZRes i . H :
j CSw=iaq; w+1i/2 ot (pT/M)d2, (w? + a2)) 7

dm >0
where
1 (g 1
m = pTOZ /M’
This proves equation (19).
For the special case whefe= ... = d); = J, we have the exact expression
- 145
_ 1 Mil T(2MN —1— j) 2\/A+ pT'62 /M !
(4 + pT82/M)MN D(MN)T(MN —j) | \/pT62]M + /4 + pT62]M

C.2 Chernoff upper bound and monotonicity

As in Appendix B, the Chernoff bound is computed by applyimyedementary inequality to the exact
probability of error (C.2). The result is

1 [ 1 M 1 N
o= — [ do——
i /oo YTy 1/4 "1;[ [(pT/M)(s,%n(wuazm)]
dm >0

N
1/4 H [ (pT/M)5%(w2+1/4)]

(C.3)

< dw _—
T ar /oo 1/41_I 1+ 2562,
M
1
- _H T ;
2m*1 +5M57271]

which is (20).
Finally, to see that increasing any, decreases the total error probability, observe that, fgranthe

integrand in (C.3) decreases s increases.
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Figure 1: Normalized capacity, and upper and lower bouneisus SNR (7" = 2, one transmitter and one
receiver antenna). The lower bound and capacity meetasoco. However, unlike the case whefe— oo,
the capacity never meets the perfect-knowledge upper bound

37

www.manharaa.com



Bits/T

T=5
M=1
N=1

— — — Perfect-knowledge upper bound

Capacity
— — — Lower bound

------ Asymptotic expansion of capacity

15 20
SNR (dB)

25

Figure 2: Normalized capacity, and upper and lower bouneisus SNRp as in Figure 1, but with" = 5.
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Figure 3: Two-signal probability of error vs. SNR for onertsmitter and one receiver antendd (= N =
1), T = 5,andd = 0.0, 0.4, 0.8.
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Figure 4: Two-signal probability of error vs. correlatidip for one transmitter and receiver antendd &
N =1),T =5, and SNR=0, 10, 20 dB.
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Figure 5: Two-signal probability of error vs. SNR for two mismitter antennas and one receiver antenna
(M =2,N = 1), T =35, andd1 =dy=d=0.0, 04, 0.8.
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Figure 6: Two-signal probability of error vs. SNR for onk/(= 1, solid curves), and twol/ = 2, dashed
curves) transmitter antennas, one receiver anteiha (1), T = 5, andd = 0.0, 0.8.
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Figure 7: Two-signal probability of error vs. SNR fdf unknown ¢ = 0) compared withH known

(6 = 1.414...), and one transmitter and one receiver antedda=£ N = 1), andT = 5.
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Figure 9: Performance of unitary space-time constellatiimn M/ = 1 versusM = 2 transmitter antennas
for T'= 5 as a function of SNR, with R = 1 bit/channel use.
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Figure 10: Magnitude of two typical independent realizasiof a Jakes fading process wifh = 0.01
cycles/sample.
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Figure 11: Unitary space-time modulation performance fu (dashed line) and two (solid lines) transmit-
ter antennas sending = 1 bit per channel use with constellations designedifoe 2, ....6. The fading

is a Jakes process witfy = 0.01 cycles/sample and there is one receiver antenna. The deerenprob-
ability of error varies little withT' and is well-approximated by the D-BPSK dashed line. The dawtenna
probabilities of error vary greatly witi’. The best overall performance for high SNR occursfoe 5.

47

www.manharaa.com




